PHYSICS 110A : CLASSICAL MECHANICS
HW 5 SOLUTIONS

(1) Taylor 7.38

Figure 1: Figure for 7.38.

The kinetic energy will be:

1 1 .
T= §m7'“2 + §mr2 sin? ag?.

And the potential energy will be:
U = mgr cos a.

So our Lagrangian is:

1 1 .
L= §m7'"2 + Emrz sin? a¢2 — Mgr cos Q..

From the Euler-Lagrange equations we get:
. .2 192
7' = rsin® ag” — g cos a. (1)

And: J
2.2
— |mr©sin® ag| =1,.
dt [ gb} ‘
Where [, is a constant we know as the angular momentum in the z-direction. Solving for qb
we have ¢ = — 5. Let’s plug this into equation (1) to get:

mr2sin? o

l2

. z

F=——F"75— —gcosa. (2)
m?2r3 sin® o



To find the equilibrium position we set # = 0 in equation (2) above. Therefore:

12
rozj ———. 3)
m=g S~ & Cos &

Finally we want to expand for small oscillations r = rg + €. So we have:

l2
€= = — gcosa.
m2(rp + €)3 sin® a

Or:
. 12
€= —gcosa.
m2r3(1 + =)? sna 7
Or:
; 12 (1-3 €. )
€ = —3—+...)—gcosa.
m2r8 sin? v 0 g
But due to equation (3) we have:
€= —73@ €.
m2rd sin? o
Where we have the equation for simple harmonic motion with w = m;égsll; —.
0
(2) Taylor 7.39
For the Lagrangian we get:
1 ) .
L= om 2+ 120? + r?sin? 042 | — U(r).
Which lead to the equations of motion:
au . .
mi = — d(r) + (mr6* 4+ mrsin® 0¢?), (4)
T
and,
d .
a[mﬁ sin? 0¢] = 0, (5)
and,
d . .
pn [mr26] = 2mr? sin 6 cos 0¢°. (6)

Equation (4) is Newton’s second law with the force from potential term —dlégr) as well as

a centrifugal force term mr0? + mr sin? 09&2.



Equation (5) shows that the [, is conserved.

Equation (6) shows that the [, is conserved, however since the ¢ vector is constantly chang-
ing the right hand side is not zero.

For 6y = 7/2 and 6y = 0 we have from equation (6):

%[mﬂé] =0.

Or, '
mr0 = C.

So 0 remains /2 and the object will remain in that plane.
For ¢ = ¢ and ¢y = 0 we have from equation (5):
mr?sin’ 8¢ = C,
So ¢ remains ¢y and the object will remain in that vertical plane.

(3) Taylor 7.41

Our parabola has the shape:
z = kp?.

Which gives us a relationship between p and 2:

z = 2kpp.
For the Lagrangian we get:
1 1 1
L= §mp'2 + Emp2w2 + iméz — mg=z.

Which we can plug the above constraints to get:

1 1
L= §mp'2 + §mp2w2 + 2mk*p? p? — mgkp?.

Which cleans up to look like:
1 2 2v.2 , 1 2 2
L= §m(1 + 4k*p*)p” + im(w — 2gk)p~.

Finding the equation of motion we get:

d . .
pn [m(1 + 4k*p®)p| = m[w?® — 2gk]p + dmk?pp*.

(14 4k2p2)j + 4k2pp® = [w? — 2gK]p. (7)



Assuming pg = 0 equilibrium will occur when the right hand side is zero, so for p = 0 and

w? = 2gk.
Now for small p and p we can rewrite equation (7) as:

P [w? —2gk]p.

So this force is similar to a spring force of the shape F' = kz. Now when 2gk > w? the k
constant is negative and it is a restoring force. For 2gk < w? the k constant is positive and

it is not a restoring force

(4) Taylor 7.50

For the Lagrangian we get:

Figure 2: Figure for 7.50.

1 . 1 .
L= §m1x2 + imgyz + magy.
And our equation of constraint is:
f=x+y—1L

From this our Lagrange multiplier equation leads us to:
mldt = )\,

and
mafj — mag = A.

m2




From our constraint equation we get:
T = —1.

Solving for \ we get,
_ —mimag

my -+ mo

If we were to look at this with Newton’s second law we would get two equations:

=T =miay,
and,
mog — T = maa.
Comparing with equations above we see A = —T.

(5) Taylor 7.51

Figure 3: Figure for 7.51.

1 1
L= im:kz + §my'2 + mgy.

And our equation of constraint is:

f=vVax2+y?—1.

From this our Lagrange multiplier equation leads us to:

mi = A\ (10)

v/ x? +y2,

and
my—mg:)\L. (11)



Now calling 6 the angle from the vertical we can rewrite these as:

mx = Asinb,

and
mi — mg = Acosf.

Writing out equations from Newton’s second law we get:
mz = —T'sinf,

and
mi = —Tcosh + mg.

So we see A = —T.

If we were to use the constraint equation:
Fe=a? 4?12
We get for our equations of motion:
mx = A2z,
and
miy —mg = A2y.
Getting rid of A in the equations (12) and (13) we get:

—— = my —myg,
X

Which is exactly what you get getting rid of lambda in equations (10) and (11).

(12)

(13)



