
PHYSICS 110A : CLASSICAL MECHANICS
PROBLEM SET #5

[1] A bead of mass m slides frictionlessly along a wire curve z = x2/2b, where b > 0. The
wire rotates with angular frequency ω about the ẑ axis.

(a) Find the Lagrangian of this system.

(b) Find the Hamiltonian.

(c) Find the effective potential Ueff(x).

(d) Show that the motion is unbounded for ω2 > ω2
c and find the critical value ωc.

(e) Sketch the phase curves for this system for the cases ω2 < ω2
c and ω2 > ω2

c .

(f) Find an expression for the period of the motion when ω2 < ω2
c .

(g) Find the force of constraint which keeps the bead on the wire.

Solution :

We will solve this problem for a general shape z(x). Since the curve is rotating, we will
use the radial coordinate ρ instead of x, keeping in mind that the wire is a one-dimensional
object and not a two-dimensional surface. The coordinate ρ then indicates the direction
along the wire but perpendicular to the ẑ axis. Note that ρ ∈ R may be positive or negative.

(a) The Lagrangian is

L(ρ, z, ρ̇, ż) = 1
2mρ̇2 + 1

2mż2 + 1
2mω2ρ2 −mgz . (1)

This is supplemented by the constraint

G(ρ, z) = z − z(ρ) = 0 . (2)

Of course, we could eliminate z as an independent degree of freedom from the outset, and
write

L(ρ, ρ̇) = 1
2m

[(
1 + [z′(ρ)]2

)
ρ̇2 + ω2ρ2

]
−mgz(ρ) . (3)

(b) The Hamiltonian is

H = pσ q̇σ − L

= 1
2mρ̇2 + 1

2mż2 − 1
2mω2ρ2 + mgz

= 1
2m

(
1 + [z′(ρ)]2

)
ρ̇2 + Ueff(ρ) . (4)
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(c) The effective potential is

Ueff(ρ) = mgz(ρ)− 1
2mω2ρ2

= 1
2m (ω2

c − ω2) ρ2 , (5)

where ωc ≡
√

g/b. Note that we do not have mρ̈ = −U ′
eff(ρ). This is because

pρ =
∂L

∂ρ̇
= m

(
1 + [z′(ρ)]2

)
ρ̇ , (6)

and thus

ṗρ =
∂L

∂ρ
⇒

(
1 + [z′(ρ)

]2
)

ρ̈ = ω2ρ− gz′(ρ)− z′(ρ) z′′(ρ) ρ̇2 . (7)

(d) Since L has no explicit time dependence, H is a constant of the moton:

H = 1
2m

(
1 + [z′(ρ)]2

)
ρ̇2 + Ueff(ρ)

= 1
2m

(
1 +

ρ2

b2

)
ρ̇2 + 1

2m(ω2
c − ω2) ρ2 . (8)

Note that if ω2 > ω2
c that the level sets of H(ρ, ρ̇) are unbounded. Hence the motion of the

system, which takes place along these level sets, is also unbounded.

(e) Let us define the dimensionless coordinate u ≡ ρ/b and dimensionless time variable
s ≡ |ω2

c − ω2|1/2 t. Then conservation of H means that

C = (1 + u2) v2 − σu2 (9)

is constant, where v = du
ds is the dimensionless velocity, and where σ ≡ sgn

(
ω2−ω2

c

)
. Setting

dC
ds = 0, we obtain

du

ds
= v ,

dv

ds
=

(σ − v2) u

1 + u2
. (10)

This phase flow has a single fixed point, at (u, v) = (0, 0), which is either a center (ω2 < ω2
c )

or a saddle point (ω2 > ω2
c ).

A sketch of the phase flow for ω2 < ω2
c is shown in Fig. 1; the flow for ω2 > ω2

c is shown in
Fig. 2. The Mathematica plot in Fig. 1 was obtained from the following commands:

<<Graphics‘PlotField‘
G1 = ContourPlot[ (1+x^2) y^2 + x^2, {x,-4,4}, {y,-4,4}, PlotPoints -> 50,
Contours -> {0.1, 1, 4, 10, 20, 50, 100}, ContourShading -> False];
G2 = PlotVectorField[ {y, -(1+y^2) x / (1+x^2)}, {x,-4,4}, {y,-4,4},
PlotPoints -> 30, ColorFunction -> Hue, ScaleFactor -> 0.55];
Show[ {G1, G2} ]
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Figure 1: Level sets of the function C(u, v) = (1 + u2) v2 + u2 superimposed on the phase
flow u̇ = v, v̇ = −u (1 + v2)/(1 + u2). Note that the phase curves are bounded.

It is worthwhile noting that other shapes z(ρ) may have fixed points for ρ 6= 0. For example,
consider the shape

z(ρ) =
ρ4

4 b3
. (11)

If we define u = ρ/b and ω2
c = g/b as before, but this time write s = ωc t, and define the

new dimensionless parameter ε ≡ ω2/ω2
c , we have that

C(u, v) = (1 + u6) v2 + 1
4u2 − 1

2εu2 (12)

is constant, and the dynamics is given by

du

ds
= v ,

dv

ds
=

(ε− u2 − 6 u4 v2) u

2 (1 + u6)
. (13)

This flow, shown in Fig. 3, exhibits a saddle point at (u, v) = (0, 0) and two centers at
(u, v) = (±

√
ε, 0). The separatrix, which flows through (0, 0), has C = 0. All the phase

curves are bounded.

(e) The equation of motion can be taken as Ḣ = 0, which yields(
1 +

[
z′(ρ)

]2
)

ρ̈ + z′(ρ) z′′(ρ) ρ̇2 = ω2ρ− g z′(ρ) . (14)
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Figure 2: Level sets of the function C(u, v) = (1 + u2) v2 − u2 superimposed on the phase
flow u̇ = v, v̇ = u (1− v2)/(1 + u2). Note that the phase curves are unbounded.

We can expand about an equilibrium solution gz′(ρ∗) = ω2ρ∗, writing ρ = ρ∗+ δρ, in which
case

δρ̈ = −Ω2 δρ , Ω2 =
gz′′(ρ∗)− ω2

1 +
[
z′(ρ∗)

]2 . (15)

Thus, the equilibrium at ρ∗ is stable if ω2 < gz′′(ρ∗) and unstable if ω2 > gz′′(ρ∗).

We can go even farther in this analysis, using the conservation of H, which allows us to
write the motion as a first order ODE,

dt = ±

√
1 +

[
z′(ρ)

]2√
2
m

[
H − Ueff(ρ)

] dρ . (16)

Identifying the turning points as solutions to

H = Ueff(ρ±) , (17)

we have the period for motion T (H) is

T (H) =
√

m
2

ρ+(H)∫
ρ−(H)

dρ

√
1 +

[
z′(ρ)

]2

H − Ueff(ρ)
. (18)
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Figure 3: Level sets of the function C(u, v) = (1+u6) v2 + 1
4u4− 1

2εu2 superimposed on the
phase flow u̇ = v, v̇ = 1

2u (ε − u2 − 6 u4 v2)/(1 + u6), for ε = 1. There are two centers, at
(±1, 0), and a saddle at (0, 0). All phase curves are bounded.

For the case z(ρ) = ρ2/2b, we have

T (H) =
4√

ω2
c − ω2

π/2∫
0

dθ

√
1 +

2H sin2θ

mb2(ω2
c − ω2)

. (19)

(g) If we write G(ρ, z) = z − z(ρ) = 0 as a constraint, the equations of motion are

mρ̈ = mω2ρ− λz′(ρ) (20)
mz̈ = −mg + λ . (21)

We now eliminate z = z(ρ), in which case

ż = z′(ρ) ρ̇ , z̈ = z′(ρ) ρ̈ + z′′(ρ) ρ̇2 . (22)

We may now write
λ = mg + mz′(ρ) ρ̈ + mz′′(ρ) ρ̇2 (23)

and, substituting this into the first of the equations of motion and collecting terms, we find(
1 + [z′(ρ)

]2
)

ρ̈ = ω2ρ− gz′(ρ)− z′(ρ) z′(ρ) ρ̇2 . (24)
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As we have seen above, this result also follows from Ḣ = 0. We may now solve for λ in
terms of ρ and ρ̇:

λ =
m

1 +
[
z′(ρ)

]2

(
g + z′′(ρ) ρ̇2 + ω2ρ z′(ρ)

)
. (25)

The force of constraint supplied by the wire is

Q = Q n̂⊥ = (Qρ ρ̂ + Qz ẑ) , (26)

where

n̂ =
−z′(ρ) ρ̂ + ẑ√
1 +

[
z′(ρ)

]2
(27)

is the unit vector locally orthogonal to the tangent to the curve. Thus,

Q = λ ·
√

1 +
[
z′(ρ)

]2

=
m

(
g + z′′(ρ) ρ̇2 + ω2ρ z′(ρ)

)√
1 +

[
z′(ρ)

]2
. (28)

We may further eliminate ρ̇ in favor of ρ by invoking conservation of H, which says

ρ̇2 =
2H
m − 2gz(ρ) + ω2ρ2

1 + [z′(ρ)
]2 . (29)

6










