
PHYSICS 110A : CLASSICAL MECHANICS
MIDTERM EXAM #2

[1] Two blocks connected by a spring of spring constant k are free to slide frictionlessly
along a horizontal surface, as shown in Fig. 1. The unstretched length of the spring is a.

Figure 1: Two masses connected by a spring sliding horizontally along a frictionless surface.

(a) Identify a set of generalized coordinates and write the Lagrangian.
[15 points]

Solution : As generalized coordinates I choose X and u, where X is the position of the
right edge of the block of mass M , and X + u + a is the position of the left edge of the
block of mass m, where a is the unstretched length of the spring. Thus, the extension of
the spring is u. The Lagrangian is then

L = 1
2MẊ2 + 1

2m(Ẋ + u̇)2 − 1
2ku2

= 1
2(M + m)Ẋ2 + 1

2mu̇2 + mẊu̇− 1
2ku2 . (1)

(b) Find the equations of motion.
[15 points]

Solution : The canonical momenta are

pX ≡ ∂L

∂Ẋ
= (M + m)Ẋ + mu̇ , pu ≡

∂L

∂u̇
= m(Ẋ + u̇) . (2)

The corresponding equations of motion are then

ṗX = FX =
∂L

∂X
⇒ (M + m)Ẍ + mü = 0 (3)

ṗu = Fu =
∂L

∂u
⇒ m(Ẍ + ü) = −ku . (4)

(c) Find all conserved quantities.
[10 points]

Solution : There are two conserved quantities. One is pX itself, as is evident from the
fact that L is cyclic in X. This is the conserved ‘charge’ Λ associated with the continuous
symmetry X → X + ζ. i.e. Λ = pX . The other conserved quantity is the Hamiltonian H,
since L is cyclic in t. Furthermore, because the kinetic energy is homogeneous of degree
two in the generalized velocities, we have that H = E, with

E = T + U = 1
2(M + m)Ẋ2 + 1

2mu̇2 + mẊu̇ + 1
2ku2 . (5)
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It is possible to eliminate Ẋ, using the conservation of Λ:

Ẋ =
Λ−mu̇

M + m
. (6)

This allows us to write

E =
Λ2

2(M + m)
+

Mm u̇2

2(M + m)
+ 1

2ku2 . (7)

(d) Find a complete solution to the equations of motion. As there are two degrees of
freedom, your solution should involve 4 constants of integration. You need not match initial
conditions, and you need not choose the quantities in part (c) to be among the constants.
[10 points]

Solution : Using conservation of Λ, we may write Ẍ in terms of ẍ, in which case

Mm

M + m
ü = −ku ⇒ u(t) = A cos(Ωt) + B sin(Ωt) , (8)

where

Ω =

√
(M + m)k

Mm
. (9)

For the X motion, we integrate eqn. 6 above, obtaining

X(t) = X0 +
Λt

M + m
− m

M + m

(
A cos(Ωt)−A + B sin(Ωt)

)
. (10)

There are thus four constants: X0, Λ, A, and B. Note that conservation of energy says

E =
Λ2

2(M + m)
+ 1

2k(A2 + B2) . (11)

Alternate solution : We could choose X as the position of the left block and x as the
position of the right block. In this case,

L = 1
2MẊ2 + 1

2mẋ2 − 1
2k(x−X − b)2 . (12)

Here, b includes the unstretched length a of the spring, but may also include the size of
the blocks if, say, X and x are measured relative to the blocks’ midpoints. The canonical
momenta are

pX =
∂L

∂Ẋ
= MẊ , px =

∂L

∂ẋ
= mẋ . (13)

The equations of motion are then

ṗX = FX =
∂L

∂X
⇒ MẌ = k(x−X − b) (14)

ṗx = Fx =
∂L

∂x
⇒ mẍ = −k(x−X − b) . (15)
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The one-parameter family which leaves L invariant is X → X + ζ and x → x + ζ, i.e.
simultaneous and identical displacement of both of the generalized coordinates. Then

Λ = MẊ + mẋ , (16)

which is simply the x-component of the total momentum. Again, the energy is conserved:

E = 1
2MẊ2 + 1

2mẋ2 + 1
2k (x−X − b)2 . (17)

We can combine the equations of motion to yield

Mm
d2

dt2
(
x−X − b

)
= −k (M + m)

(
x−X − b

)
, (18)

which yields
x(t)−X(t) = b + A cos(Ωt) + B sin(Ωt) , (19)

From the conservation of Λ, we have

MX(t) + m x(t) = Λt + C , (20)

were C is another constant. Thus, we have the motion of the system in terms of four
constants: A, B, Λ, and C:

X(t) = − m
M+m

(
b + A cos(Ωt) + B sin(Ωt)

)
+

Λt + C

M + m
(21)

x(t) = M
M+m

(
b + A cos(Ωt) + B sin(Ωt)

)
+

Λt + C

M + m
. (22)
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[2] A uniformly dense ladder of mass m and length 2` leans against a block of mass M ,
as shown in Fig. 2. Choose as generalized coordinates the horizontal position X of the
right end of the block, the angle θ the ladder makes with respect to the floor, and the
coordinates (x, y) of the ladder’s center-of-mass. These four generalized coordinates are not
all independent, but instead are related by a certain set of constraints.

Recall that the kinetic energy of the ladder can be written as a sum TCM + Trot, where
TCM = 1

2m(ẋ2 + ẏ2) is the kinetic energy of the center-of-mass motion, and Trot = 1
2Iθ̇2,

where I is the moment of inertial. For a uniformly dense ladder of length 2`, I = 1
3m`2.

Figure 2: A ladder of length 2` leaning against a massive block. All surfaces are frictionless..

(a) Write down the Lagrangian for this system in terms of the coordinates X, θ, x, y, and
their time derivatives.
[10 points]

Solution : We have L = T − U , hence

L = 1
2MẊ2 + 1

2m(ẋ2 + ẏ2) + 1
2Iθ̇2 −mgy . (23)

(b) Write down all the equations of constraint.
[10 points]

Solution : There are two constraints, corresponding to contact between the ladder and the
block, and contact between the ladder and the horizontal surface:

G1(X, θ, x, y) = x− ` cos θ −X = 0 (24)

G2(X, θ, x, y) = y − ` sin θ = 0 . (25)

(c) Write down all the equations of motion.
[10 points]

Solution : Two Lagrange multipliers, λ1 and λ2, are introduced to effect the constraints.
We have for each generalized coordinate qσ,

d

dt

(
∂L

∂q̇σ

)
− ∂L

∂qσ
=

k∑
j=1

λj

∂Gj

∂qσ
≡ Qσ , (26)
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where there are k = 2 constraints. We therefore have

MẌ = −λ1 (27)

mẍ = +λ1 (28)

mÿ = −mg + λ2 (29)

Iθ̈ = ` sin θ λ1 − ` cos θ λ2 . (30)

These four equations of motion are supplemented by the two constraint equations, yielding
six equations in the six unknowns {X, θ, x, y, λ1, λ2}.

(d) Find all conserved quantities.
[10 points]

Solution : The Lagrangian and all the constraints are invariant under the transformation

X → X + ζ , x → x + ζ , y → y , θ → θ . (31)

The associated conserved ‘charge’ is

Λ =
∂L

∂q̇σ

∂q̃σ

∂ζ

∣∣∣∣
ζ=0

= MẊ + mẋ . (32)

Using the first constraint to eliminate x in terms of X and θ, we may write this as

Λ = (M + m)Ẋ −m` sin θ θ̇ . (33)

The second conserved quantity is the total energy E. This follows because the Lagrangian
and all the constraints are independent of t, and because the kinetic energy is homogeneous
of degree two in the generalized velocities. Thus,

E = 1
2MẊ2 + 1

2m(ẋ2 + ẏ2) + 1
2Iθ̇2 + mgy (34)

=
Λ2

2(M + m)
+ 1

2

(
I + m`2 − m

M+m m`2 sin2 θ
)

θ̇2 + mg` sin θ , (35)

where the second line is obtained by using the constraint equations to eliminate x and y in
terms of X and θ.

(e) What is the condition that the ladder detaches from the block? You do not have to solve
for the angle of detachment! Express the detachment condition in terms of any quantities
you find convenient.
[10 points]

Solution : The condition for detachment from the block is simply λ1 = 0, i.e. the normal
force vanishes.
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Further analysis : It is instructive to work this out in detail (though this level of analysis
was not required for the exam). If we eliminate x and y in terms of X and θ, we find

x = X + ` cos θ y = ` sin θ (36)

ẋ = Ẋ − ` sin θ θ̇ ẏ = ` cos θ θ̇ (37)

ẍ = Ẍ − ` sin θ θ̈ − ` cos θ θ̇2 ÿ = ` cos θ θ̈ − ` sin θ θ̇2 . (38)

We can now write

λ1 = mẍ = mẌ −m` sin θ θ̈ −m` cos θ θ̇2 = −MẌ , (39)

which gives
(M + m)Ẍ = m`

(
sin θ θ̈ + cos θ θ̇2

)
, (40)

and hence
Qx = λ1 = − Mm

m + m
`
(
sin θ θ̈ + cos θ θ̇2

)
. (41)

We also have

Qy = λ2 = mg + mÿ

= mg + m`
(
cos θ θ̈ − sin θ θ̇2

)
. (42)

We now need an equation relating θ̈ and θ̇. This comes from the last of the equations of
motion:

Iθ̈ = ` sin θ λ1 − ` cos θλ2

= − Mm
M+m `2

(
sin2θ θ̈ + sin θ cos θ θ̇2

)
−mg` cos θ −m`2

(
cos2θ θ̈ − sin θ cos θ θ̇2

)
= −mg` cos θ −m`2

(
1− m

M+m sin2θ
)

θ̈ + m
M+m m`2 sin θ cos θ θ̇2 . (43)

Collecting terms proportional to θ̈, we obtain(
I + m`2 − m

M+m sin2θ
)
θ̈ = m

M+m m`2 sin θ cos θ θ̇2 −mg` cos θ . (44)

We are now ready to demand Qx = λ1 = 0, which entails

θ̈ = −cos θ

sin θ
θ̇2 . (45)

Substituting this into eqn. 44, we obtain(
I + m`2

)
θ̇2 = mg` sin θ . (46)

Finally, we substitute this into eqn. 35 to obtain an equation for the detachment angle, θ∗

E − Λ2

2(M + m)
=

(
3− m

M + m
· m`2

I + m`2
sin2θ∗

)
· 1

2mg` sin θ∗ . (47)
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If our initial conditions are that the system starts from rest1 with an angle of inclination
θ0, then the detachment condition becomes

sin θ0 = 3
2 sin θ∗ − 1

2

(
m

M+m

)(
m`2

I+m`2

)
sin3θ∗

= 3
2 sin θ∗ − 1

2 α−1 sin3θ∗ , (48)

where

α ≡
(

1 +
M

m

)(
1 +

I

m`2

)
. (49)

Note that α ≥ 1, and that when M/m = ∞2, we recover θ∗ = sin−1
(

2
3 sin θ0

)
. For finite α,

the ladder detaches at a larger value of θ∗. A sketch of θ∗ versus θ0 is provided in Fig. 3.
Note that, provided α ≥ 1, detachment always occurs for some unique value θ∗ for each θ0.

Figure 3: Plot of θ∗ versus θ0 for the ladder-block problem (eqn. 48). Allowed solutions,
shown in blue, have α ≥ 1, and thus θ∗ ≤ θ0. Unphysical solutions, with α < 1, are shown
in magenta. The line θ∗ = θ0 is shown in red.

1‘Rest’ means that the initial velocities are Ẋ = 0 and θ̇ = 0, and hence Λ = 0 as well.
2I must satisfy I ≤ m`2.
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