PHYSICS 110A : CLASSICAL MECHANICS
FINAL EXAM SOLUTIONS

[1] Two blocks and three springs are configured as in Fig. 1. All motion is horizontal.
When the blocks are at rest, all springs are unstretched.
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Figure 1: A system of masses and springs.

(a) Choose as generalized coordinates the displacement of each block from its equilibrium
position, and write the Lagrangian.
[5 points]

(b) Find the T and V matrices.
[5 points]

(¢) Suppose

my=2m , mg=m , k =4k , ky=k , ky=2Fk,

Find the frequencies of small oscillations.
[5 points]

(d) Find the normal modes of oscillation.
[5 points]

(e) At time t = 0, mass #1 is displaced by a distance b relative to its equilibrium position.
Le. £,(0) = b. The other initial conditions are z,(0) = 0, ;(0) = 0, and #,(0) = 0.
Find t*, the next time at which x, vanishes.

[5 points]

Solution

(a) The Lagrangian is

_ 1 2,1 2 1 2 1 2 1 2
L =3smyai+ smyxs — 5k 27 — 5ky (x5 — 21)* — 5kg 5




(b) The T and V matrices are
T.. = 82T = my 0 V.. = 82U — kl + k2 _k2
v 0%; aj}j 0 my ’ K ox; 8:Ej _k2 k2 + kg

(c) We have m; = 2m, my = m, k; = 4k, ky, = k, and ky = 2k. Let us write w? = )\wg,

where wy, = y/k/m. Then

o g (22A=5 1
w“T V—k< 1 \_3]) -

The determinant is

det (W?T — V) = (202 — 11\ + 14) k?
=2A-T)(A—=2)k*.

There are two roots: A\_ =2 and A\, = %, corresponding to the eigenfrequencies
2k 7k
w_ =1/ — w, =4\ —
- m ’ + 2m

(d) The normal modes are determined from (w2T — V)@ = 0. Plugging in A = 2 we have
for the normal mode
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Plugging in A = % we have for the normal mode 1/7(“
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The standard normalization ¢§a) T, ¢](.b) =0, gives

(e) The general solution is

(2) =A G) cos(w_t) + B <_12> cos(w, t) + C G) sin(w_t) + D (_12> sin(w, t) .



The initial conditions x,(0) = b, 24(0) = #,(0) = #,(0) = 0 yield
2 1
A = gb ; B - gb 5 C = O 5 D -
Thus,

b-(2cos(w_t) + Cos(w+t)>

/N 7 N

cos(w_t) — cos(w+t)> .

Setting x4 (t*) = 0, we find

cos(w_t*) = cos(w, t*) = 7mT-w it=w,t-1 =

2m
T w_ +wy




[2] Two point particles of masses m, and m, interact via the central potential

,,,.2
U(T) = UO In <m> s

where b is a constant with dimensions of length.

(a) For what values of the relative angular momentum ¢ does a circular orbit exist? Find
the radius 7 of the circular orbit. Is it stable or unstable?
[7 points]

(c) For the case where a circular orbit exists, sketch the phase curves for the radial motion
in the (r,7) half-plane. Identify the energy ranges for bound and unbound orbits.
[5 points]

(c) Suppose the orbit is nearly circular, with r = r 47, where || < r,. Find the equation
for the shape 7(¢) of the perturbation.
[8 points]

(d) What is the angle A¢ through which periapsis changes each cycle? For which value(s)
of ¢ does the perturbed orbit not precess?
[5 points]

Solution

(a) The effective potential is

€2
Ue(r) = W +U(r)

0 2
= In{ ——=1 .
2ur? U In (7‘2 —I—b2>

where 1 = mymy/(my + m;) is the reduced mass. For a circular orbit, we must have
Ulg(r) =0, or ) )

l 2rUgb

—5=U0)= 2T20 7 -

pr r?(r? + %)

The solution is

b2

2 _
0T 520, — 2

Since 7"8 > 0, the condition on ¢ is

0 < 0, = \/2ub20,




For large r, we have
1
UCH(T‘) = <— — UO b2> . ﬁ + O(?"_4) .

Thus, for ¢ < /. the effective potential is negative for sufficiently large values of r. Thus,
over the range ¢ < {., we must have U, < 0, which must be a global minimum, since

eff,min

U.z(07) = oo and U_g(00) = 0. Therefore, the circular orbit is stable whenever it exists.
(b) Let £ = e /.. The effective potential is then
Uea(r) = Uy f(r/b) ,

where the dimensionless effective potential is

62 2
f(s):s—2—ln(1+s ).

The phase curves are plotted in Fig. 2.
(c) The energy is

E = %/’LT2 + Ueﬁ(r)

2 (dr\
=5 (i) + 0t

where we've used 7 = ¢ along with ¢ = pr2¢. Writing r = ro +n and differentiating £
with respect to ¢, we find

4
T
W' ==Fn . 5= 5 Uklro) -

2 72
20— =2(1-=
ﬁ ,ub2U0 62

1(¢) = A cos(B¢ +9) (2)

For our potential, we have

The solution is

where A and ¢ are constants.

(d) The change of periapsis per cycle is

Ap=2r (3 1)

If B > 1 then A¢ < 0 and periapsis advances each cycle (i.e. it comes sooner with every
cycle). If 3 < 1 then A¢ > 0 and periapsis recedes. For 3 = 1, which means ¢ = /ub2Uy,
there is no precession and A¢ = 0.



Figure 2: Phase curves for the scaled effective potential f(s) = es™2 — In(1 + s72), with
€= % Here, € = £/{,. The dimensionless time variable is 7 =t - \/Up/mb?.



[3] A particle of charge e moves in three dimensions in the presence of a uniform magnetic
field B = B z and a uniform electric field E = Ejz. The potential energy is

Ulr,r) = —eEjx — EBO:E@'/ )
c
where we have chosen the gauge A = Bjxy.
(a) Find the canonical momenta p;, py, and p..
[7 points]
(b) Identify all conserved quantities.

[8 points]

(¢) Find a complete, general solution for the motion of the system {z(t),y(t),z(t)}
[10 points]

Solution

(a) The Lagrangian is

. . . € .
L:%m(m2+y2+22)+230xy+eE03:.

The canonical momenta are

OL .
Pa= 5 =™
oL L€

py—a—y,—my—l——BO:E

oL

Pr =5z =M

— 9L _
=9y = 0

(b) There are three conserved quantities. First is the momentum p,, since Fy
g—g = 0. The third conserved quantity is the

Second is the momentum p., since F,

Hamiltonian, since %—f = 0. We have

H=p,2+p,y+p,2—L

= H=im(i* +* + 2°)




(¢) The equations of motion are

e

i —wei) = — B,
m
i+ wei =0
£=0,

The second equation can be integrated once to yield y = wc(zy, — x), where z is a constant.
Substituting this into the first equation gives

. e

This is the equation of a constantly forced harmonic oscillator. We can therefore write the
general solution as

eE()
t) = A t+9
z(t) = x5+ —3 + A cos (wet + 9)

C

E
y(t) =yo — ;wo t — A sin (wet + 6)

2(t) = 2y + %ot

Note that there are six constants, {A, 0, Tgs Yor 2o ZO}, are are required for the general
solution of three coupled second order ODEs.



[4] An N =1 dynamical system obeys the equation

du

7 = ru + 2bu® — u? |

where 7 is a control parameter, and where b > 0 is a constant.

(a) Find and classify all bifurcations for this system.
[7 points]

(b) Sketch the fixed points u* versus r.
[6 points]

Now let b = 3. At time ¢ = 0, the initial value of u is u(0) = 1. The control parameter
r is then increased wvery slowly from r = —20 to r = +20, and then decreased very
slowly back down to r = —20.

(c) What is the value of u when r = —5 on the increasing part of the cycle?
[3 points]

(d) What is the value of u when r = 416 on the increasing part of the cycle?
[3 points]

(e) What is the value of u when r = 416 on the decreasing part of the cycle?
[3 points]

(f) What is the value of v when r = —5 on the decreasing part of the cycle?
[3 points]

Solution

(a) Setting u = 0 we obtain
(u> = 2bu —r)u=0.

u=0 , u=bx\b2+r.

The roots at w = uy = b+ v/b? +r are only present when r > —b%. At r = —b? there
is a saddle-node bifurcation. The fixed point u = u_ crosses the fixed point at u = 0 at
r = 0, at which the two fixed points exchange stability. This corresponds to a transcritical
bifurcation. In Fig. 3 we plot 11/b3 versus u/b for several representative values of r/b?. Note
that, defining @ = u/b, ¥ = r/b?, and t = b*t that our N = 1 system may be written

The roots are

du

— =(F+2a—a*a,
which shows that it is only the dimensionless combination # = r/b? which enters into the
location and classification of the bifurcations.
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Figure 3: Plot of dimensionless ‘velocity’ /b3 versus dimensionless ‘coordinate’ u/b for
several values of the dimensionless control parameter & = r/b2.

(b) A sketch of the fixed points u* versus r is shown in Fig. 4. Note the two bifurcations

at r = —b* (saddle-node) and 7 = 0 (transcritical).

(c) For r = —20 < —b? = —9, the initial condition u(0) = 1 flows directly toward the stable
fixed point at u = 0. Since the approach to the FP is asymptotic, u remains slightly positive
even after a long time. When r = —5, the FP at u = 0 is still stable. Answer: u = 0.

(d) As soon as r becomes positive, the FP at u* = 0 becomes unstable, and u flows to the
upper branch u . When r = 16, we have u = 3 + V32 4 16 = 8. Answer: u = 8.

(e) Coming back down from larger r, the upper FP branch remains stable, thus, u = 8 at
r = 16 on the way down as well. Answer: u = 8.

10
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Figure 4: Fixed points and their stability versus control parameter for the N = 1 system
@ = ru + 2bu® — u3. Solid lines indicate stable fixed points; dashed lines indicate unstable
fixed points. There is a saddle-node bifurcation at » = —b? and a transcritical bifurcation
at r = 0. The hysteresis loop in the upper half plane u > 0 is shown. For u < 0 variations
of the control parameter r are reversible and there is no hysteresis.

(f) Now when r first becomes negative on the way down, the upper branch v, remains
stable. Indeed it remains stable all the way down to r = —b?, the location of the saddle-
node bifurcation, at which point the solution u = u, simply vanishes and the flow is toward
u = 0 again. Thus, for r = —5 on the way down, the system remains on the upper branch,
in which case v =3 4+ V32 —5 = 5. Answer: u = 5.
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