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Consider George as a “free Particle/Wave” with Energy E incident from Left

Free particle are under no Force; have wavefunctions like

W= A eilkewt) or B ei-kx-wi)



Tunneling Through A Potential Barrier
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Beam Of Particles With E < U Incident On Barrier From Left
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Description Of WaveFunctions in Various regions: Simple Ones first
In RegionI: W,(x,t)= A" + Be'"" ) = incident + reflected Waves
'k’

with E =i =

define Reflection Coefficient : [R

2m

= E
AF

= frac of incident wave intensity reflected back

In Region III: W (x,t) = Fe'“ ™ + Ge'" ) = transmitted

Note : Ge' ™™ corresponds to wave incident from right !

This piece does not exist in the scattering picture we are thinking of now (G=0)

So W, (x,t) = Fe'™® represents transmitted beam. Define |T

_
AF

Unitarity Condition = R +T=1 (particle is either reflected or transmitted)



Wave Function Across The Potential Barrier

(m;:(!rct_:lxt) (transmitted)

R, kx
reflected) Fe'!

Be—ikx




Continuity Conditions Across Barrier
At x =0, continuity of ¥ (x) =

A+B=C+D (1)
At x =0, continuity of 4y (x) =
dx
lkA - ZkB =0 C — (XD (2) (injie({c;xt) TR (transmitted)
Similarly at x=L continuity of y(x) = (reéle_c;gd)h — Fot ik
Ce—OCL +De+OCL — FeikL (3) s
at x=L, continuity of dt/;(x) =
X

(aC)e ™"+ (aD)e™ =ikFe™ (4)
Four equations & four unknowns
Cant determine A,B,C,D but 1f you
Divide thruout by A in all 4 equations :

— ratio of amplitudes — relations for R & T

That's what we need any way



Potential Barrier when E < U

Above equation holds only for E <U

Sinh(aL) becomes oscillatory
This leads to an Oscillatory T(E) and
Transmission resonances occur where

ﬂ For E>U, a=1maginary#

For some specific energy ONLY, T(E) =1

At other values of E, some particles are

olutiions for R & T:

> reflected back ..even though E>U !!

That’s the Wave nature of the
Quantum particle



Tunneling across a barrier

Oxide layer

Wire #1 Wire #2
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Oxide layer

Wire #1 Wire #2

1 mA current == = N=6.25%x10" electrons

Q=Ng,
t

N, =# of electrons that escape to the adjacent wire (past oxide layer)

N, =N.T =(6.25x10" electrons)x; Oxide thickness makes all the difference !

For L=10 A, T=0.657x107 = N, =4.11x10 = |1, = 65.7 pA|!!

That’s why from time-to-time one needs to

Scrape off the green stuff off the naked wires

Current Measured on the first wire is sum of incident+reflected currents

and current measured on "adjacent" wire is the |
T



QM in 3 Dimensions

 Learn to extend S. Eq and 1its
solutions from “toy” examples
in 1-Dimension (x) — three
orthogonal dimensions (r=

X,Y,Z)

r=ix+ jy+kz
e Then transform the systems
— Particle in 1D rigid box = 3D
rigid box
— 1D Harmonic Oscillator - 3D
Harmonic Oscillator
« Keep an eye on the number
of different integers needed
to specify system 1> 3
(corresponding to 3 available
degrees of freedom Xx,y,z)
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Quantum Mechanics In 3D: Particle in 3D Box

AZ
- U(©)=0 for (0<x,y.z<L)
Ask same questions:
* Location of particle in 3d Box
e  Momentum
* Kinetic Energy, Total Energy
« Expectation values in 3D
>y
y=0

y=L To find the Wavefunction and various

expectation values, we must first set up

the appropriate TDSE & TISE



The Schrodinger Equation in 3 Dimensions: Cartesian Coordinates

—>

y

Time Dependent Schrodinger Eqn:

h* d0¥(x,y,z,t)

——VY¥(x,y,2,0)+U(x, y,2)¥(x,t) = ih——22 .. In 3D
2m ot
2 2 2
V? = : —+ : —+ : :
ox* dy° oz
2 2 2 2 2 2 2
So -2 o —h—a—2 + —h—a—2 + —h—a—z =[K]
2m 2m ox 2m dy 2m oz
= [Kx] + [Kx] + [Kx]

so [H]¥Y(x,t)=[E]¥(x,t) 1s still the Energy Conservation Eq

Stationary states are those for which all probabilities are constant in time
and are given by the solution of the TDSE in seperable form:

¥(x,,z,t) =Y, t) =y (P)e™
This statement is simply an extension of what we derived in case of 1D

time-independent potential



Particle in 3D Rigid Box : Separation of Orthogonal Spatial (x,y,z) Variables

2

TISE 1n 3D: —;—Vzl//(x, v,2)+U(x, y, 2 (x,y,z)=Ey(x,y,2)
m

X,¥,z independent of each other , write v (x, y,z) =y, (X)v, (V)¥,(2)

and substitute 1n the master TISE, after dividing thruout byy =y, (x)y, (¥)y,(2)

and noting that U(r)=0 for (0<x,y,z,<L) =

2 2 2 2 2 2
1 awlz(x) . _h 1 al/lzz(y) N 1 81/132(2) E— Const
2my,(x) ox 2my,(y) dy 2my,(z) oz
This can only be true if each term is constant for all x,y,z =

Py, () n 9y, () P Py, (2)
— — X , —_ p— , - — VA
om o 1‘//1( ) ' ayz D) (») m 92 3W3( )
With (E, + E, + E, = E=Constant | (Total Energy of 3D system)
Each term looks like particle in 1D box (just a different dimension)
So wavefunctions must be like |1/, (x) o< sin kx| [y, (V) o< sin k, y|.|W;(2) o< sin k,z




Particle in 3D Rigid Box : Separation of Orthogonal Variables

Wavetunctions are like [y (x) o< sink x| |y (y) o< sSink,y ||y, (z) =< sink,z

9
\9

Continuity Conditions for Y. = |n.7w = k. L

Leads to usual Quantization of Linear Momentum |p=7ik|.....in 3D

h h h
px:(L]nl ; py:(Tjnz ) pZ:£Ljn3 (nl’ 2o 11 :1’2’3"'00)

=0! (why?)

Note: by usual Uncertainty Principle argument neither of n ,n_,n

1
Particle Energy E = K+U =K +0 = 2—(p§ + pi + Pzz) =
m

Energy 1s again quantized and brought to you by integers n n, (independent)

1° 2’

and y(r)=Asink xsink ysink,z (A = Overall Normalization Constant)

.E .E
— -1—t
h

WE)=y([De " =|A [sinkxsink,ysinkz]e "




Particle in 3D Box :Wave function Normalization Condition

.E .
-1—t¢ -1—¢
" =|A[sinkxsink ysinkz]e "

Y(T,t)=y(r) e

.E B
1—t 1—t
h

P GE)=y (f) e’ =|A [sin kxsmmk,ysinkz]e”

P (L )W(T,t)=4" [sin’ k X sin’ kzysin2 k.z]
Normalization Condition : 1 = J” P(r)dx dydz =

X,y,z

L L L L L
1= 42 j sin’  x dx j sin® k,y dy j sin k z dz =4’ ( 5 ]( 5 ](
x=0 y=0 z=0

3 3
2 |2 2 |2 AL
= A=|—| and |¥(r,t)= ~ [sink xsink ysinkz]e "




Particle in 3D Box : Energy Spectrum & Degeneracy

t°h’ 3 3 2
n N,y 2ml’ (ny +n; +n;); n,=1,2,3..00,n, #0
3mih?
Ground State Energy E,,, = 77:—2
2mlL
. B 67’ h’
Next level = 3 Excited states E,, = E,,, =E,,, = Sl

Different configurations of v (r)=w(Xx,y,z) have same energy = degeneracy

A 7 n® Degeneracy
4E, 12 None
7= .
g T 11 3
3E, 9 3
Ly
Y 2E, 6 3
x=L

3 None




Degenerate States
_en’n’




