

Physics 2D Lecture Slides Week o f May 4,2009 Part 2

(Oleg Shpyrko) Sunil Sinha

UCSD Physics

 $p = \frac{E}{c}$
 $E^{2} = (mc^{2})^{2}$, ρc^{2}

de Broglie's matter-wave theory

Louis de Broglie

Bohr's Explanation of Hydrogen like atoms

- \bullet • Bohr's Semiclassical theory explained some spectroscopic data \rightarrow Nobel Prize : 1922
- \bullet The "hotch-potch" of classical & quantum attributes left many (Einstein) unconvince d
	- "appeared to me to be a miracle and appears to me to be a miracle today One ought to be ashamed of the successes of the theory"
- \bullet Problems with Bohr's theory:
	- Failed to predict INTENSITY of spectral lines
	- Limited success in predicting spectra of Multi-electron atoms (He)
	- Failed to provide "time evolution " of system from some initial state
	- Overemphasized Particle nature of matter-could not explain the wave-particle duality of light
	- No general scheme applicable to non-periodic motion in subatomic systems
- \bullet Without fundamental insight …raised the question : Why was Bohr successful?

Prince Louis de Broglie & Matter Waves

- \bullet Key to Bohr atom was Angular momentum quantization
- •Why this Quantization: $mvr = |L| = nh/2\pi$?
- •Invoking symmetry in nature, Louis de Broglie conjectured:

Because photons have wave and particle like nature Æ **particles may have wave like properties !!**

Electrons have accompanying "pilot " wave (not EM) which guide particles thru spacetime

A PhD Thesis Fit For a Prince

• Matter Wave !

- **"Pilot wave" of** λ **= h/p = h / (** γ**mv)**
- $\mathcal{L}_{\mathcal{A}}$, and the set of th **frequency f ⁼ E/h**

•**Consequence:**

- **If matter has wave like p p ro perties then there would be interference (destructive & constructive)**
	- **Use analogy of standing waves on a plucked** string to explain the quantization condition of **Bohr orbits**

Matter Waves : How big, how small 1.Wavelength of baseball, m=140g, v=27m/s $\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{6.63 \times 10^{-34} J.s}{(.14 kg)(27 m/s)} = 1.75 \times 10^{-34}$ $\frac{h}{m} = \frac{6.63 \times 10^{-34} \text{ J.s}}{2.5 \times 10^{14} \text{ J}} = 1.75 \times 10^{14} \text{ J}$ *mv* $(.14kg)(27m/s)$ $\lambda = \frac{n}{r} = \frac{3.65 \times 10^{-34} \text{ m}}{6.65 \times 10^{-34} \text{ m}} = 1.75 \times 10^{-34} \text{ m}$ $=\frac{h}{s} = \frac{6.63 \times 10^{-34} J.s}{1.75 \times 10^{-34} J.s} = 1.75 \times 10^{-3}$ size of nucleus λ*baseball* <<< Baseball "looks" like a particle ⇒⇒2. Wavelength of electr on K=120eV (assume NR) $\overline{\text{p}}^2$ $K - \frac{r}{2m} \Rightarrow p = \sqrt{2mK}$ $=\sqrt{2(9.11\times10^{-31})(120eV)(1.6\times10^{-19})}$ $\times 10^{-31}$)(120eV)(1.6×10⁻ 1 $=5.91 \times 10^{-24}$ Kg*m* / s ³⁴ J .s 1 1 2 \cdot 1 0 $^{-10}$ $\frac{6.63\times10^{-34} J.s}{24} = 1.12\times10^{-10}$ h **6.63×10⁻³⁴ J.s** $\lambda_{\circ} = \frac{N}{\eta} = \frac{0.05 \times 10^{-8} \text{ m/s}}{24 \pi \text{ m}} = 1.12 \times 10^{-10} m$ − $=\frac{h}{p}=\frac{6.63\times10^{-3} J.S}{5.91\times10^{-24} kg.m/s}=1.12\times10^{-7}$ $\lambda_e \square$ Size of atom |!! $\frac{1}{e} = \frac{n}{p} = \frac{3.91 \times 10^{-24} \text{ kg} \cdot m/s}{5.91 \times 10^{-24} \text{ kg} \cdot m/s} = 1.12 \times 10^{-10}$ ⇒

Models of Vibrations on a Loop: Model of e in atom

De Broglie's Explanation of Bohr's Quantization

Standing waves in H atom: Constructive interference when $n\lambda = 2\pi r$ $\text{since } \lambda = \frac{\text{h}}{\text{h}} = \frac{h}{\text{h}}$ p $\ldots \ldots (NR)$ *mv* $\frac{nh}{2} = 2\pi r$ *mv* ⇒ \Rightarrow \mid *nh* = *mvr* Angular momentum Quantization condition!

This is too intense ! Must verify such "loony tunes" with experiment

Reminder: Light as a Wave : Bragg Scattering Expt

 (a)

Range of X-ray wavelengths scatter Photographic
plate with Off a crystal sample X-rays constructively interfere from

Certain planes producing bright spots

Interference \rightarrow Path diff=2dsin θ = n λ

Figure 5.4 A schematic diagram of the Davisson-Germer apparatus.

Verification of Matter Waves: Davisson & Germer Expt

If electrons have associated wave like properties \rightarrow expect interference pattern when incident on a layer of atoms (reflection diffraction grating) with inter-atomic separation d such that

path diff AB= d sin $\varphi = n\lambda$

Electrons Diffract in Crystal, just like X-rays

Diffraction pattern produced by 600eV electrons incident on a Al foil target

Notice the waxing and waning of scattered electron Intensity.

What to expect if electron had no wave like attribute

Davisson-Germer Experiment: 54 eV electron Beam

$$
Peak at \Phi=50^{\circ}
$$

when V_{acc} = 54 V

Analyzing Davisson-Germer Expt with de Broglie idea

de Broglie λ for electron accelerated thru V_{acc} =54V

$$
\bullet \ \frac{1}{2}mv^2 = K = \frac{p^2}{2m} = eV \Rightarrow v = \sqrt{\frac{2eV}{m}} \quad ; \ \ p = mv = m\sqrt{\frac{2eV}{m}}
$$

If you believe de Broglie

$$
\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{h}{m\sqrt{\frac{2eV}{m}}} = \boxed{\frac{h}{\sqrt{2meV}}} = \lambda^{predict}
$$

For $V_{\text{acc}} = 54 \text{ Volts} \Rightarrow \lambda = 1.67 \times 10^{-10} m$ (de Broglie) **Exptal data from Davisson-Germer Observation:**

 $d_{\text{nickel}} = 2.15 \text{ A} = 2.15 \times 10^{-10} m$ (from Bragg Scattering)

 $\theta_{\text{diff}}^{\text{max}} = 50^{\circ}$ (observation from scattering intensity plot)

Diffraction Rule : $d \sin \phi = n \lambda$

 \Rightarrow For Principal Maxima (n=1); λ^{meas} =(2.15 Å)(sin 50°) $\begin{vmatrix} \lambda^{\text{predict}} = 1.67 \text{ Å} \\ \lambda^{\text{observ}} = 1.65 \text{ Å} \end{vmatrix}$

Davisson Germer Experiment: Matter Waves!

Practical Application : Electron Microscope

Electron Microscopy

Electron Microscope: Excellent Resolving Power

Electron Micrograph Showing Bacteriophage Viruses in E. Coli bacterium

The bacterium is $\approx 1\mu$ size

Swine Flu Virus

Electron microscope image of the H1N1 virus, April 27, 2009, at the U.S. Centers for Disease Control and Prevention's headquarters in Atlanta, Georgia (AP Photo/Center for Disease Control and Prevention, C. S. Goldsmith and A. Balish) The viruses are 80–120 nanometres in diameter.

1918 Swine Flu Virus

Negative stained transmission electron micrograph (TEM) showed recreated 1918 influenza virions that were collected from the supernatant of a 1918-infected Madin-Darby Canine Kidney (MDCK) cell culture 18 hours after infection.

The 1918 Spanish flu epidemic was caused by an influenza A (H1N1) virus, killing more than 500,000 people in the United States, and up to 50 million worldwide.

West Nile Virus extracted from a crow brain

TEM pictures of Carbon Nanotubes

FIG. 2. Schematic representation of the experimental setup: nozzle system and gas reservoir N; electron impact excitation EE; entrance slit A, double slit B, and detector screen C; secondary electron multiplier SEM (mounted together with C on a translation stage). Dimensions: $d = 8 \mu m$, $L = L' = 64 \text{ cm}$; slit widths: $s_1 = 2 \mu m$, $s_2 = 1 \mu m$.

Just What is Waving in Matter Waves ?

- •• For waves in an ocean, it's the Imagine Wave pulse moving along water that "waves"
- \bullet For sound waves, it's the molecules in medium
- For light it's the **E** & **B** vectors
- \bullet What's waving for matter waves ?
	- **It's the PROBABLILITY OF FINDING THE PARTICLE that waves !**
	- **Particle can be represented by a wave packet in**
		- **S pace**
		- **Time**
		- **Made by superposition of many sinusoidal waves of different** λ
		- **It's a "pulse" of probability**

the contract of a string: its localized in time and e (unlike a pure harmonic wave

What Wave Does Not Describe a Particle

- •What wave form can be associated with particle's pilot wave?
- A traveling sinusoidal wave? $y = A \cos (kx \omega t + \Phi)$
- • Since de Broglie "pilot wave" represents particle, it must travel with same speed as particle ……(like me and my shadow)

Single sinusoidal wave of infinite extent does not represen^t particle localized in space

Need "wave packets" localized Spatially (x) and Temporally (t)

Wave Group or Wave Pulse

\bullet

- Superposition of many sinusoidal waves with different wavelengths and fre quencies
- Localized in space, time
- Size designated by
	- Δx or Δt
- Wave groups travel with the speed $\mathsf{v}_{\mathsf{g}} = \mathsf{v}_{\mathsf{0}}$ of particle
- \bullet Constructing Wave Packets
	- $-$ Add waves of diff λ ,
	- For each wave, pick
		- Amplitude
		- Phase
	- Constructive interference over the space-time of particle
	- Destructive interference elsewhere !

• Wave Group/packet: Imagine Wave pulse moving along a string: its localized in time and quencies space (unlike a pure harmonic wave)

 (a) v_0

Wave packet represents particle prob

WINNWWINNMMNNMMNN

Phase velocity

$$
V_p = \frac{w}{k} = \lambda \cdot f
$$

 $V_s = \frac{v}{\sqrt{k}}$

Group velocity

See animation of group/phase velocity at:

http://en.wikipedia.org/wiki/Group_velocity

Resulting wave's "displacement " y = y1 ⁺ *y* : 2⎡ ⎤ *A* cos(*k*1) cos(*k*) ⎣ ⎦ *tt*^ω1+ω*y xx*=−2 2Trignometry : cosA+cos B =2cos(A+B)cos(A-B) 22⎡ [⎢] [⎤] ⎛ ⎞ ⎛ ⎞ *kk*1*kk*1ω^ω1+ω+^ω1− ⎥ 2 22 22*A*() () ⎜ ⎟ ^c ⎟ *t t*∴cosos*y* = *x x*⎝ ⎠ ⎝ ⎠ ⎢ ⎦ 2222⎥ ⎣ since k*k*1*k* ,^Δ *kk*,Δ ≅ [≅] ≅ [≅] ω^ω1ωωω , 2 2*aveave*⎡ ⎤ ⎛ ⎞ Δ*k*Δω⎥ [≡] y = ^A' cos(*kx* [⎢] [⎦] 2*A* cos() ⎟ cos(*kx*)), A' oscillates in x,t ∴⎜ *t*ω*t*ω*ty x*=−⎝ ⎠ 22⎣ ⎛ ⎞ Δ*k*Δω*A*' 2*A*() l t dula lit damplitu d⎜ ⎠ *t*⎟ ⁼ mo cos *x*ee=⎝ 22*w*Phase Vel V *ave* =*p kave*waveΔ*w*Group Vel Vg Group =Δ*k*Or packet*dwV ^g* : Vel of envelope= *dk*