Coulomb's law: $F = k \frac{Q_1 Q_2}{r^2}$; $k = 9 \times 10^9 N \cdot m^2 / C^2$; $\varepsilon_0 = 8.85 \times 10^{-12} C^2 / (N \cdot m^2)$.

Electric field due to a point Q charge at distance r: $E = k \frac{Q}{r^2} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$. Linear, surface

and volume charge densities: $\lambda = \frac{dq}{dl}$, $\sigma = \frac{dq}{dA}$, $\rho = \frac{dq}{dV}$. Electric field of an infinite

uniformly charged line $E = \frac{2k\lambda}{r}$ and plane $E = \frac{\sigma}{2\varepsilon_0}$. Electric flux: $\Phi = \vec{E} \cdot \vec{A}$;

 $d\Phi = \vec{E} \cdot d\vec{A} \; ; \; \Phi = \int \vec{E} \cdot d\vec{A} \; . \; \text{Gauss's law: } \oint \vec{E} \cdot d\vec{A} = Q_{encl} \; / \; \varepsilon_0 \; .$

Potential energy, potentials and potential differences: $U_{ab} = U_b - U_a = -W_{ab} = -\int_a^b \vec{F} \cdot d\vec{l}$;

$$V_{ab} = V_b - V_a = -\int_a^b \vec{E} \cdot d\vec{l}$$
; Volt $[V] = [J/C]$; $V = k \frac{Q}{r}$; $V = k \int \frac{dq}{r}$; $E_l = -\frac{dV}{dl}$;

$$E_x = -\frac{\partial V}{\partial x}$$
; $U_{12} = k \frac{Q_1 Q_2}{r_{12}}$.

Capacitors: Q = CV; parallel plate $Q = \varepsilon_0 \frac{A}{d}$; energy $U = \frac{1}{2} \frac{Q^2}{C}$; with dielectric:

 $C=KC_0$; permittivity of material $\varepsilon=K\varepsilon_0$. Capacitors in parallel $C=C_1+C_2$; in series

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} \, .$$