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Li=L, Ly =L, =2L. Let ﬁ =Ey. Then E = E0(4nf +n3+ n%) Choose the quantum

numbers as follows:

Ny n, N3 £
Eo
1 1 1 6 ground state
1 2 1 9 * first two excited states
1 1 2 9 *
2 1 1 18
1 2 2 12 * next excited state
2 1 2 21
2 2 1 21
2 2 2 24
1 1 3 14 * next two excited states
1 3 1 14 *

Therefore the first 6 states are w111, W121, V112, W122, V113, and w3 with relative energies

E
E_ =6,9,9,12, 14, 14. First and third excited states are doubly degenerate.
0

(a) n1=l, Ny =1, N3 =1

2
322 3h? 3(6.626 x 107 s
= ( ) > =452x107% J=282 eV
2mL” 8mL” g(9.11x 107 kg Y2 %1070 m)

Eo

(b) np=2,n,=1,n;=1or
n1=l, Ny =2, N3 =1or
nl=1, n2 :1, n3 :2

6h’
Ei =—— =2E, =564 eV
L amL? 0
n’=11
(hz 2\ 11(?'12 2\
@  E=lymz) =T 0e)
2mL 2\ mL
(b) N N, ng
1 1 3
1 3 1 3-fold degenerate
3 1 1
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(a) (//(X, y ): 7 (X)l//2 (y) In the two-dimensional case, y = A(sin ky stin k, y) where
n 27T

nmw
k =LL and k2=—L.

b ? 7r2! n12 + n§ )
(b) T
22
If we let E; =——, then the energy levels are:
m

ny Ny E

Eo
1 1 1 - Yu
1 2 3 - V12

2 :|doubly degenerate
2 1 S - Y

2
2 2 4 - Va2

(@) ng=n,=nz=1 and
2 —34\?

Ery = 3o63x10%) =2.47x107" J ~ 154 MeV

8mL® ~ (167 x107 (4 x102)

@ +1°+1° p?
(b) States 211, 121, 112 have the same energy and E = =2Eq;1 = 3.08 MeV
gy smL2

!22 +22 417 EZ
and states 221, 122, 212 have the energy E = =3E;;; 463 MeV .

smL?

() Both states are threefold degenerate.

There is no force on a free particle, so that U(r) is a constant which, for simplicity, we take to

be zero. Substituting ‘P(r, t)= w1 (D, (y)//3 (2)¢(t) into Schrodinger’s equation with U(r) =0
N S - 9

gives —%Lax—z + ? + ?J‘P(r, t)= in e v (r, t). Upon dividing through by

0w w() wi@) | ing'(t) _—
w1 (w, (y)/lg (2)4(t) we obtain — m | v (X)+ Vs (y)+ v |~ 90 Each term in this

equation is a function of one variable only. Since the variables x, y, z, t are all independent,
each term, by itself, must be constant, an observation leads to the four separate equations
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2 ",
Y1 X j
- =E
( w1 (%) '
- E
)
wa(x
g )}
in =E
{ 9
This is subject to the condition that E; +E, + E3 = E. The equation for y; can be rearranged
dzl//l ( szl
dx? n?
w1 (X) = o sin (kg X)+ S, cos(ky x) with k =

are indeterminate from this analysis. Similarly, we find

as jl//l (x), whereupon it is evident the solutions are sinusoidal

2mEl

. However, the mixing coefficients ¢4 and g

W (y) =a, sin (k2 y)+ P> COS (k2 y)
w3 (z) = az sin (ks 2)+ f5 cos(ksz)

2m

with k% = 2m§ 2 and ki = . The equation for ¢ can be integrated once to get

#(t)= ye ! with o :% and y another indeterminate coefficient. Since the energy operator

is [E]= Ih— and Ih( )gﬁ E¢ energy is sharp at the value E in this state. Also, since

[pf]:—hz(a—” d (&) (k. ¥ . . S
L@xz ) an L@Xz Jl/ll (hkl 1 the magnitude of momentum in the x direction

is sharp at the value 7k, . Similarly, the magnitude of momentum in the y and z directions are
sharp at the values 7k, and 7ik;, respectively. (The sign of momentum also will be sharp here

if the mixing coefficients are chosen in the ratios 4 _ i, and so on).
n=4,1=3,and m; =3.
(@) “[10+0)]%n = pG+1){*n =23 =365 x10% 35

(b) L, =ma=371=316x10"* Js



~

The probability of finding the electron in a volume element dV is given by II//IZ av .
Since the wave function has spherical symmetry, the volume element dV is identified
here with the volume of a spherical shell of radius r, dV = 47r?dr . The probability of
finding the electron between r and r + dr (that is, within the spherical shell) is

P=ldv =azr|yf dr.

P

r=a, r

RN () .
oy =asflfrar a2 fo=0rtore 5 ffe et

Integrating by parts, or using a table of integrals, gives

(4) (a )3(2]3
2 0
dav =| = ||2|= ]| | —]| |=1.
flv 2295
.
P =47rf|w|2 r’dr where 1, =% and r, :3%

n
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2%e7%dz
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1
2

he—_w

= _% (z2 +22 +2)e‘ZL3 (integrating by parts )

_ —1—27 63 1261 0496

8-13 Z =2 for He™

(@) For n =3, can have the values 0of 0, 1, 2

0 - m|=0
1 > m=-10, +1
2 > m=-2,-1,0,+1, +2

72
(b) All states have energy E; = (136 eV)

E; =604 eV.

814  Z =3 for Li*"

(a) n=1-1=0->m; =0
n=2—->1=0-»>m; =0
and I=1->m =-1, 0, +1
(32)
(b) For n=1, Elz—kl—zj(13.6)=—122.4 eV

(32)
For n=2,E, = i?)(13.6): -306 eV

8-16  For ad state, | =2. Thus, m| can take on values -2, -1, 0, 1, 2. Since L, =m%, L, can be
+27, £ h, and zero.

8-17  (a) For a d state, | =2
L=[10+1)]" = 6" @.055x 10 15)=2.58 x 10 35

(b) For an fstate, 1=3
L=[10+1)]"n = 12)'* (055 x 10 35)=365x 107 Js

8-18  The state is 6g

(a) n==6



821 (a)

(b)

©

8-22 Rop (1) = Are 20 \where A =

136 eV 136
E, —-—2Y E, ———= eV =-0.378 eV
2 62

For a g-state, 1=4
L=[10+1)]"*n = @x5)/*n =200 =4.471

m, can be -4,-3,-2,-1,0,1,2,3, or 4

I-z m;
L=mh;cos0=—"=—"——5h="F—
7 | 2 (—20

m,
L po+)f
m 4 3 2 -1 0 1 2 3 a4
L, -4h -3 -2 -h O K 2n 3h 4K

6 1534° 132.1° 116.6° 102.9° 90° 77.1° 63.4° 47.9° 26.6°

32

1 1 r

vasl) = =" (—a ) (2 — Jerlzao Atr=a,=0529x10" m we find
T 0 0

R Ki)l,z-(%jw 2-1)pY2 = (o.sso{%j "

= (0.380){ :

3[2
ST o0t
. X m

s o | = (0.88x10" m ‘3/2)2 -9.75x10® m ®

Using the result to part (b), we get P25(60)=47ra§|y/25(60 ]2 =3.43x10"" m™.

1
2(6)1I2 ao5/2

P(r)=r’RZ,(r)= A2rtea

{r) = [rP(r)dr = A% [ r%7%dr = A?a§5!=5a, =2.645 A
0 0



