
 

 

6-35 Applying the momentum operator 
 
px  

i







d

dx
 to each of the candidate functions yields 

 

(a) 
    
px  A sin kx   

i





k A cos kx   

 

(b) 
    
px  A sin kx  A cos kx   

i





k A cos kx   A sin kx   

 

(c) 
    
px  A cos kx  iA sin kx   

i





k A sin kx  iA cos kx   

 

(d) 
  
px  eik x a   

i





ik eik x a   

 
 In case (c), the result is a multiple of the original function, since 
 

    A sin kx  iAcos kx   i A cos kx  iA sin kx  . 
 

 The multiple is 
  



i





 ik   k  and is the eigenvalue. Likewise for (d), the operation   px  

returns the original function with the multiplier  k . Thus, (c) and (d) are eigenfunctions of 

  px  with eigenvalue   k , whereas (a) and (b) are not eigenfunctions of this operator. 
 
6-37 (a) Normalization requires 

 

 

    

1   2
dx





 C2  1
*  2

*  1  2 dx






 C2  1
2
dx   2

2
dx   2

* 1dx   1
* 2 dx 

. 

 
 The first two integrals on the right are unity, while the last two are, in fact, the same 

integral since    1  and   2  are both real. Using the waveforms for the infinite square 
well, we find 

 

 
    
 2 1dx 

2

L
sin

 x

L







sin
2 x

L






dx

0

L

 
1

L
cos

 x

L






 cos

3 x

L


















dx

0

L

  

 
 where, in writing the last line, we have used the trigonometric exponential identities 

of sine and cosine. Both of the integrals remaining are readily evaluated, and are 

zero. Thus,     1  C2 1 0 0 0 2C2 , or 
  
C 

1

2
. Since   1,2  are stationary states, 

they develop in time according to their respective energies   E1,2  as   eiEt  . Then 

    
 x, t  C  1eiE1t   2eiE 2t  . 

 



(c)      x, t  is a stationary state only if it is an eigenfunction of the energy operator 

E  i

t

. Applying   E  to   gives 

 

 
    
E   C i

iE1







 1eiE1t   i

iE2







 2eiE 2t 







 C E1 1eiE1t  E2 2eiE2t  . 

 
 Since     E1  E2 , the operations  E  does not return a multiple of the wavefunction, and 

so   is not a stationary state. Nonetheless, we may calculate the average energy for 
this state as  

 

 

    

E  * E dx  C2  1
*eiE1t   2

*eiE 2t   E1 1eiE 1t   E2 2eiE 2t  dx

C2 E1  1
2

dx  E2  2
2
dx   

 

 with the cross terms vanishing as in part (a). Since   1,2  are normalized and 
    
C2 

1

2
 

we get finally 
    
E 

E1 E2

2
. 

 
7-1 (a) The reflection coefficient is the ratio of the reflected intensity to the incident wave 

intensity, or 

    

R 
1 2  1  i 

2

1 2 1  i 
2 . But   1  i

2  1  i  1  i *  1  i  1  i   1  i
2  2 , so 

that     R  1  in this case. 
 
(b) To the left of the step the particle is free. The solutions to Schrödinger’s equation are 

  e
ikx  with wavenumber 

  
k 

2mE

2







1 2

. To the right of the step  U x  U  and the 

equation is 
    

d2
dx2 

2m

2 U E  x . With   x   ekx , we find 
  

d2
dx2  k2 x , so that 

    
k 

2m U E 
2










1 2

. Substituting 
  
k 

2mE

2







1 2

 shows that 
  

E

U E 












1 2

1  or 
    

E

U


1

2
. 

 

(c) For 10 MeV protons,     E 10 MeV  and 
  
m 

938.28 MeV

c2 . Using 

    
  197.3 MeV fm c 1 fm 1015  m , we find 

    

 
1

k




2mE 1 2 
197.3 MeV fm c

2  938.28 MeV c2 10 MeV  1 2  1.44 fm . 

 
7-2 (a) To the left of the step the particle is free with kinetic energy E and corresponding 

wavenumber 
    
k1 

2mE

2







1 2

: 

 

   x   Ae ik 1x  Beik1x    x  0  



 
 To the right of the step the kinetic energy is reduced to  E U  and the wavenumber is 

now 
  
k2 

2m E U 
2











1 2

 

 

   x   Ceik 2x  De ik2x    x  0  
 

 with     D  0  for waves incident on the step from the left. At   x  0  both   and 
 

d
dx

 

must be continuous:    0   A  B  C  
 

  

d
dx 0

 ik1 A B   ik2C . 

 

(b) Eliminating C gives 
  
A B 

k1

k2
A B  or 

  
A

k1

k2
 1






B

k1

k2
 1







. Thus, 

 

  

R 
B

A

2


k1 k2 1 2

k1 k2  1 2


k1  k2 2

k1  k2 2

T  1  R 
4k1k2

k1  k2 2
 

 
(c) As   E U ,     k2  0 , and   R 1 ,   T  0  (no transmission), in agreement with the result 

for any energy   E U . For  E  ,   k1  k2  and   R  0 ,   T  1  (perfect transmission) 
suggesting correctly that very energetic particles do not see the step and so are 
unaffected by it. 

 
7-3 With     E  25 MeV  and     U  20 MeV , the ratio of wavenumber is 

    

k1

k2


E

E U







1 2


25

25  20







1 2

 5 2.236 . Then from Problem 7-2 

  

R 
5  1 2

5  1 2
 0.146  and 

    T  1  R  0.854 . Thus, 14.6% of the incoming particles would be reflected and 85.4% would 
be transmitted. For electrons with the same energy, the transparency and reflectivity of the 
step are unchanged. 

 
7-4 The reflection coefficient for this case is given in Problem 7-2 as 
 

    

R 
B

A

2


k1 k2 1 2

k1 k2  1 2


k1  k2 2

k1  k2 2
. 

 
 The wavenumbers are those for electrons with kinetic energies   E  54.0 eV  and 

    E U  54.0 eV  10.0 eV  64.0 eV : 
 

k1

k2


E

E U







1 2


54 eV

64 eV







1 2

0.918 6 . 

 



 Then, 

    

R 
0.918 6 1 2

0.918 6  1 2
 1.80  103  is the fraction of the incident beam that is reflected at the 

boundary. 
 
7-5 (a) The transmission probability according to Equation 7.9 is 

    

1

T E  1 
U 2

4E U E 












sinh 2L  with 
  
 

2m U E  1 2


. For  E U , we find 

    
 L 2  2mUL2

2  1  by hypothesis. Thus, we may write 
  
sinh  L 

1

2
e L . Also 

  U E U , giving 
    

1

T E  1 
U

16E





e

2 L 
U

16E





e

2 L  and a probability for 

transmission 
    
P T E   16E

U





e

2 L . 

 
(b) Numerical Estimates: 

  
  1.0551034  Js  

1) For     m  9.11 1031  kg ,   U E 1.60 1021  J ,   L 1010 m ; 

    
 

2m U E  1 2


 5.12 108  m 1  and   e

2 L  0.90  

2) For     m  9.11 1031  kg ,   U E 1.60 1019  J ,   L 1010 m ; 

    5.12 109  m 1  and   e
2 L 0.36  

3) For     m  6.7 1027  kg ,   U E  1.60  1013  J ,   L  1015 m ;     4.4  1014 m 1  

and     e2 L 0.41  
4) For     m 8 kg ,     U E  1 J ,   L 0.02 m ;   3.8 1034 m 1  and 

    e
2 L  e1.510 33

 0  
 
 
7-16 Since the alpha particle has the combined mass of 2 protons and 2 neutrons, or about 

    3 755.8 MeV c2 , the first approximation to the decay length   is 
 

    

 


2mU 1 2 
197.3 MeV fm c

2 3 755.8 MeV c2 30 MeV  1 2  0.415 6 fm . 

 
 This gives an effective width for the (infinite) well of   R   9.415 6 fm , and a ground state 

energy 

    

E1 
2 197.3 MeV fm c 2

2 3 755.8 MeV c2 9.415 6 fm 2
 0.577 MeV . From this E we calculate 

    U E  29.42 MeV  and a new decay length  
 

    

 
197.3 MeV fm c

2 3 755.8 MeV c2 29.42 MeV  1 2  0.419 7  fm . 

 



 This, in turn, increases the effective well width to 9.419 7 fm and lowers the ground state 
energy to     E1  0.576 MeV . Since our estimate for E has changed by only 0.001 MeV, we may 
be content with this value. With a kinetic energy of   E1 , the alpha particle in the ground state 

has speed 

    

v1 
2E1

m







1 2


2 0.576 MeV 

3 755.8 MeV c2 














1 2

 0.017 5c . In order to be ejected with a 

kinetic energy of 4.05 MeV, the alpha particle must have been preformed in an excited state 
of the nuclear well, not the ground state. 

 
7-17 The collision frequency f is the reciprocal of the transit time for the alpha particle crossing the 

nucleus, or 
    
f 

v

2R
, where v is the speed of the alpha. Now v is found from the kinetic energy 

which, inside the nucleus, is not the total energy E but the difference   E U  between the total 
energy and the potential energy representing the bottom of the nuclear well. At the nuclear 
radius     R  9 fm , the Coulomb energy is 

 

 
    

k Ze  2e 
R

 2Z
ke2

a0







a0

R





 2 88  27.2 eV  5.29  104  fm

9 fm







 28.14 MeV . 

 
 From this we conclude that   U  1.86 MeV  to give a nuclear barrier of   30 MeV  overall. Thus 

an alpha with     E  4.05 MeV has kinetic energy  4.05  1.86  5.91 MeV  inside the nucleus. 
Since the alpha particle has the combined mass of 2 protons and 2 neutrons, or about 

    3 755.8 MeV c2  this kinetic energy represents a speed 
 

    

v 
2Ek

m







1 2


2 5.91 

3 755.8 MeV c2













1 2

 0.056c . 

 

 Thus, we find for the collision frequency 
  
f 

v

2R


0.056c

2 9 fm   9.351020  Hz . 

 



7-18 Any one conduction electron of the metal is virtually free to move about with a speed v 

fixed by its kinetic energy 
    

! 

Ek =
1

2
mv

2 , but the average energy per electron available for 

motion in any specific direction (say, normal to the surface) is reduced from this by the 
factor 1/3 to account for the random directions of travel: 

 

    

! 

Ek =
1

2
m vx

2 + vy
2 + vz

2{ } =
3

2
m vx

2 , or 
    

! 

1

2
m vx

2
=

1

3
Ek . 

 
 For a sample with dimension L normal to the surface, the time elapsed between collisions 

with this surface is 
    

! 

2L

v
x

, for any one electron. The reciprocal of this time is the collision 

frequency. For two electrons, collisions occur twice as often, and so forth, so that the 

collision frequency for N electrons is 
    

! 

N vx

2L
. Making the identification 

    

! 

vx

2

= vx

2  allows 

us to write the collision frequency f in terms of electron energy as 
    

! 

f =
N

2L

2Ek

3m

" 

# $ 
% 

& ' 

1 2

. The 

density of copper is   

! 

8.96 g cm
3 , so one cubic centimeter represents an amount of copper 

equal to 8.96 g, or the equivalent of 
  

! 

8.96

63.54
= 0.141  moles (the atomic weight of copper is 

63.54). Since each mole contains a number of atoms equal to Avogadro’s number 

    

! 

NA = 6.02 " 10
23 , the number of copper atoms in our sample is 

    

! 

0.141NA  or about 
  

! 

8.49 " 10
22 , which is also the number N of conduction electrons. 

   The most energetic electrons in copper have kinetic energies of about 7 
eV. Using this for 

  

! 

Ek ,     

! 

L = 1 cm , and     

! 

N = 8.49 " 10
22  gives for the collision frequency 

    

! 

f = 3.85 " 10
30

 Hz . 
 



Addendum to problem 16
The ground state energy is E1 = 0.576 MeV , so (7.10) gives:

T ∼ exp(− 2
h̄

√
2m

∫ 19fm
9fm

√
U − E1 dx) = exp(− 2

h̄c
10 fm

√
2mc2(U − E1)) =

exp(− 2
197.3 Mev fm

10 fm
√

2 ∗ 3755.8 MeV ∗ (30− 0.576) Mev) ≈ e−47.6

For the n = 6 state we first need to approximately determine the energy
by the same iterative procedure. Note that this procedure need not always
start with δ, we may start with the energy as well, and as in this case we
expect the energy to be much closer to U , we do start with the energy (the
final result, of course, should not depend on the starting point if the process
converges, however the number of steps to reach the desired accuracy does).
So we first treat the well as infinite and calculate E6:

E6 = 36π2h̄2

2mL2 = 36π2(h̄c)2

2mc2L2 = 36π2(197.3 MeV fm)2

2∗3755.8 MeV ∗(9 fm)2
≈ 22.732 MeV

Now calculate δ with this energy:
δ = h̄√

2m(U−E)
= h̄c√

2mc2(U−E)
= 197.3 MeV fm√

2∗3755.8 MeV ∗(30−22.732) MeV
≈ 0.844 fm

Using this δ we calculate E6 again (note that we use L + δ rather than
L + 2δ as the well is semi-infinite), and keep doing this:

E6 = 36π2h̄2

2m(L+δ)2
= 36π2(h̄c)2

2mc2(L+δ)2
= 36π2(197.3 MeV fm)2

2∗3755.8 MeV ∗(9.844 fm)2
≈ 19.00 MeV

δ = 197.3 MeV fm√
2∗3755.8 MeV ∗(30−19.00) MeV

≈ 0.686 fm

E6 = 36π2(197.3 MeV fm)2

2∗3755.8 MeV ∗(9.686 fm)2
≈ 19.626 MeV

δ = 197.3 MeV fm√
2∗3755.8 MeV ∗(30−19.626) MeV

≈ 0.707 fm

E6 = 36π2(197.3 MeV fm)2

2∗3755.8 MeV ∗(9.707 fm)2
≈ 19.541 MeV

δ = 197.3 MeV fm√
2∗3755.8 MeV ∗(30−19.541) MeV

≈ 0.704 fm

E6 = 36π2(197.3 MeV fm)2

2∗3755.8 MeV ∗(9.704 fm)2
≈ 19.553 MeV

We stop here as the last two values of E6 are very close to each other.
Using this energy we calculate the transmission coefficient exactly as for the
ground state:

T ∼ exp(− 2
h̄

√
2m

∫ 19fm
9fm

√
U − E6 dx) = exp(− 2

h̄c
10 fm

√
2mc2(U − E6)) =

exp(− 2
197.3 Mev fm

10 fm
√

2 ∗ 3755.8 MeV ∗ (30− 19.553) Mev) ≈ e−28.4
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