6-6 zp(x) = Acos kx + Bsin kx

d
_11) = —-kAsin kx + kB cos kx
Jx
92
a_q; = —k? Acos kx — k*Bsin kx
x

(—hzm)(E Uy - (_imE)(Acoskx +Bsin kx)

2

2
d -2
The Schrédinger equation is satisfied if a—l’g =( - Zm ) (E-U)y or
x

—kz(Acos kx + Bsin kx) = (_iTE)(Acos kx + Bsin kx).

2,2
Therefore E = K
2m

212 2

nh 3h
6-9 E,=——,s0 AE=E, -E, =——
" 8ml? 2T T g

(1240 eV nm/c)’
§(938.28 x 10° eV/[* (10~ nm)

AE =(3) > = 6.14 MeV

6-10 E,

2 (66310 Js) N
- = - =6.03x107%7 =377 eV
8mL 8(9.11x107! kg)(10™* m]

(a) E, =377 eV
E, =37.7 x2* =151 eV

E; =37.7 x 3% =339 eV
E, =377 x4% =603 eV

hc
(b) hf=T=Eni _Enf
he 1240 eV -nm

Eni _Enf - Eni _Enf

For nj=4, n; =1, E, -E, =603eV -37.7 eV =565 eV, A =219 nm
nj=4, nf =2, A=275nm

nj=4, nf =3, A =470 nm

nj=3, g =1, A =412 nm

ny=3, iy =2, A =659 nm

n=2, n =1, A=109 nm

A=




6-12 AE

6-13  (a)
(b)
(0
6-14  (a)
(b)
6-16  (a)

he ([ h
A

(38)na]"

mc

=7.93x10"" m =793 A.

LSmL ] nd L=

Proton in a box of width L =0.200 nm =2x107° m

2
2 6.626 x103* J-s
E =1 > = ( ) ~=822x10"]
8myL”  8(1.67 10 kg)(2x10™" m)
22 x107%
822>x10 " J 5134107 ev

T1.60x10™° Jlev

Electron in the same box:

P (6626x107 75
8L’ g(9.11x1071 kg)2x10710 m)

=~ =1506x107" ] =9.40 eV .

The electron has a much higher energy because it is much less massive.

. nA h nh
Still, > =L so p=k=2L

Ka[ep (e’ ]”2- )= E-me
(nhc ]
_ (nhc ]

Taking L=10"> m, m =9.11x10™" kg, and n=1 we find K; =4.69 x107* J.
The nonrelativistic result is

E, =

VT 8m T 8011x107 kg0 m?) ]

Comparing this with K;, we see that this value is too big by 29%.
TX 2
y(x) = Asin(T) , L =3 A. Normalization requires

L L
1=fLU|2dx=fA2 sinz(nL—x)dx ==
0 0

12
so A= (Z)



6-18

6-24

P= f|l/’|2dx ( )fsm (ﬂ )dx—zﬂﬁsm ¢d¢—% E—(3)1,2}=0.1955.

8

12

~ (1007 x 2
(b) Y = Asm( I ) , A= (Z)
1

13

2 100 x 2 L

Z dr=2( L in2 ¢do =
P=7 [smn ( )x L(lOOn) [ sinde ==
1 1

]s'n(Z”) _——£=0.3319

3 [200;: 3) 3 400x
Since the wavefunction for a particle in a one-dimension box of width L is given by

6 4 3

100x 1 . (200:‘[)]
- —sin

[ nmwx NEEE:
Y, =Asin| — L it follows that the probability density is P(x |z/1 |z A sin )

which is sketched below:

p(x)h

l
T 3t 27 St 3n nmx
2 2 2 T
nmx 3t 5 1
From this sketch we see that P(x) is a maximum when T - %, 7n, ?n, =Jr(m + E)
or when
L 1
X=—|m+=— m=0,1,2,3,..,n
n 2
Likewise, P(x) is a minimum when =0, m, 2%, 37, ... = mm or when
L
x=—m m=0,1,2,3,...,n
n
dy (2
After rearrangement, the Schrédinger equation is d—z’g = (h_T) {U(x) - E}l]} (x) with
x
1 —axz .
U(x) = Emw x> for the quantum oscillator. Differentiating 1 (x) = Cxe gives

dy ax?
T = 2axy(x)+C

and



6-25

6-29

dy  2axdy

dx’ dx

-2a(x) —(2(1 x)Ce_‘”z = (2(1 x)zlp(x) —6a1(x).

Therefore, for 1 () to be a solution requires

2
o a2 522 -2

2mE mw 3a i

2

3
=5 hw . The normalization

integralis 1= f |1/1 |zdx 2C? [ 22e2** dx where the second step follows from the

symmetry of the integrand about x = 0. Identifying a with 2¢ in the integral of Problem
12 (3203 1]4
™ 320
6-32 gives 1=2C (8(1)(2 ) orC=L - } .

At its limits of vibration x ==A the classical oscillator has all its energy in potential form:
12

1 E
E=Ema)2A2 or A=( 2)

1
. If the energy is quantized as E,, = (n + —) hiw , then the
mm 2

12
2n +1)h
corresponding amplitudes are A, = [%} .

(a) Normalization requires

1= |l/}|2dx =C2fe_2x(1 —e_x)zdx =C2f(e_2x —2e™F 4™ )dx. The integrals are
—oo 0 0

1 (1) 1) &
elementary and give 1= C? {E —2( 5) + 4} 'T . The proper units for C are those

of (length)_ll2 thus, normalization requires C =(12)1/2 nm 2.

(b) The most likely place for the electron is where the probability |y |z is largest. This

d
is also where v itself is largest, and is found by setting the derivative G equal

dx

zero:

-X

The RHS vanishes when x = « (a minimum), and when 2¢™ =1, 0r x=In2 nm.

Thus, the most likely position is at x, =In2nm =0.693 nm .

(o) The average position is calculated from

O e



6-31

6-32

~ 1
The integrals are readily evaluated with the help of the formula [ xe™ dx=—5 to
0 a

1 1) 1 13
get (x) = C? {Z - 2( 5) + E} =C? {m} . Substituting C* =12nm™ gives

13
(x) = E nm =1.083 nm.

We see that (x) is somewhat greater than the most probable position, since the

probability density is skewed in such a way that values of x larger than x, are

weighted more heavily in the calculation of the average.

The symmetry of h} (xx2 about x =0 can be exploited effectively in the calculation of
average values. To find (x)

()= o o

We notice that the integrand is antisymmetric about x =0 due to the extra factor of x (an
odd function). Thus, the contribution from the two half-axes x>0 and x <0 cancel

exactly, leaving {x) =0. For the calculation of (x2 ), however, the integrand is symmetric

and the half-axes contribute equally to the value of the integral, giving
(x) = fx2|1p|2 dx = 2C2fxze_2xlx“dx.
0 0

3
Two integrations by parts show the value of the integral to be 2( %) . Upon substituting

3,2 12 2\ 12 X
for C?, we get (x2)=2(%)(2)(%) =x2_0 and Ax=((x2>—(x)2)l =(%) =T02.In

calculating the probability for the interval —~Ax to +Ax we appeal to symmetry once
again to write

+Ax Ax Ax
P=f l/}lzdx=2C2Ofe_zx’xodx=—ZCZ(x—Z())e_zx/XUL “1-e® _0757
—-Ax

or about 75.7% independent of x .

1/4
The probability density for this case is h}o(x)lz =Ce™ with Cg = (%) and a = m_;)
For the calculation of the average position (x) = f xllpo(x)lz dx we note that the integrand

is an odd function, so that the integral over the negative half-axis x <0 exactly cancels

that over the positive half-axis (x > 0), leaving (x) =0. For the calculation of (x2 ),

2
however, the integrand lelpol is symmetric, and the two half-axes contribute equally,
giving



6-33

6-34

12

(x2 ) =2C02fxze_”xzdx =2C§(ﬁ)(%)
0

12

12
Substituting for Cy and a gives (x2 ) = % = 2n;11w and Ax= (( ) (x) ) I (me )

(a) Since there is no preference for motion in the leftward sense vs. the rightward
sense, a particle would spend equal time moving left as moving right, suggesting

(p:)=0.

(b) To find ( }2{) we express the average energy as the sum of its kinetic and

( )

potential energy contributions: {E) = < > +{U). But energy is sharp

1
in the oscillator ground state, so that (E ) =E) = Ehw . Furthermore, remembering

1 h
that U(x) = Emwzx2 for the quantum oscillator, and using (x2 ) =5 from

Problem 6-32, gives (LI) = 1 mwz(x2 ) = lehw . Then

hw) mhw
2

(v2) =2m(E, -u)) - ZW( n

@ an=(2)- ) - (1 )’2

e mhw

2
i
From Problems 6-32 and 6-33, we have Ax= (—) and Ap, = ( —) . Thus,
2 mw 2

e,

n NP e . - .
AxAp, =| —— —— | == for the oscillator ground state. This is the minimum
2mw 2 2

uncertainty product permitted by the uncertainty principle, and is realized only for the
ground state of the quantum oscillator.



