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o 6.626x10™ J-s
mA (9.11x10™ kg)(1x107" m)
From the principle of conservation of energy, we get

h
Using p= o =mv,we find that v = =727 x10° m/s.

mo? (911x107" kg)(727 x10° mfs)’

-17
eV = > = > =241x10"" J =151 eV.

Therefore V=151V

2 2
For a free, non-relativistic electron E = mero = % . As the wavenumber and angular
e
frequency of the electron’s de Broglie wave are given by p =ik and E = o, substituting
nk® do  hk
these results gives the dispersion relation w = So v, = 2. =2 ()
Me dk  m. me
2
E* =pzc2 + (mec2)
P2
E= [pzcz + (mecz) ] .As E=hw and p=rk
512
ho = [hzkzc2 +(mec2) ] or
512
()
w(k) =|k2c? + Y.
2.2 2 12T 5 2
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do| 1 (mc V] kS
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Therefore, ve <cif v, >c.

AxAp 2% where Ap = mAv = (0.05 kg)(10_3 x 30 m/s) =15x107 kg-m/s. Therefore,

h 6.626 x10°* J -5

Ax = =
20p 4n(1.5 x107 kg-m/s

) =351x10"? m.



5-19 Ke——="—:

2

(1x10° ev)(1.6x107 J/eV) = 4 )=>p=2.312><10_20 kg m/s,

2(1.67 x 107 kg

h
Ap=005p =1160 x107*" kg -m/s and AxAp = e Thus
7

663x107* J s

=456x107"* m.
(116 x10™" kg -m/s)(4x) g

Ax =

Note that non-relativistic treatment has been used, which is justified because the kinetic

energy is only

(16107} x 100%
150x107°

11%

of the rest energy.

5-23  (a)

(b)

5-24  (a)

(b)

(0

n
ApAx = mAvAx = >

h 2x]-s
> =
4w mAx 4:1(2 ngl m)

Av =025 m/s

The duck might move by (0.25 m/ s)(5 s) =1.25 m . With original position
uncertainty of 1m, we can think of Ax growingto 1m +125 m=225m.

h
AxAp=1h soif Ax=r, Apz;

2
PP ) N
2m.  2m, 2mer2
2
ke
r
i’ ke’
E= >——
2m.r r
dE 1’ ke ’
To minimize E take — = ———= + Lz =0=r= 5 = Bohr radius = a4y . Then
r et r meke

2
h k2 k2 k2 4
E=(—)/u\ || meke) _meket oy

21m, k a 1 21

h
5-25  To find the energy width of the y-ray use AEAf= 5 or

h 658x107° eV-s
AE=z — =

>329x107° eV.
24t~ (2)(0.10x107 s S




As the intrinsic energy width of ~ +3x107® eV is so much less than the experimental
resolution of 5 eV, the intrinsic width can’t be measured using this method.

5-26  The full width at half-maximum (FWHM) is 110 MeV. So AE =55 MeV and using
AEminAtmin =

7

NS

h_ 658x107'% eV:s
2AE 2(55x10° eV)

7 = lifetime ~ 2Af,;, =1.2x107% s

At pin = =6.0x10% s

A
5-27  For a single slit with width a, minima are given by sin = nT where n=1, 2, 3, ... and

. X1 }\. X 2)\. Xy — X1 )\.
~t ==, —=— d_=_ —_—_ —
sinf = tan 0 L3 an I p = I p or
aAx  5A x2.1cm
e _ 0525 A
A T 0 0525
2 2 2 4 % )2
I h 124 x10" eV -A
E-L _ (he) ( ) > =546 eV

2m~ 2ma’ " 2me* R o511x10° eV)(0.525 A)

n
AyAp, ~h Ap, = A_y . From the diagram, because the momentum triangle and space

. . Ap, 05 cm
triangle are similar, ) =
X

7

(05 cm)p, _(05cm)p,Ay (05x107 m}(0.001 kg)(100 m/s)(2x10~* m)

Ap, h 1.05x10* J-s
=95%x10” m

Once again we see that the uncertainty relation has no observable consequences for
macroscopic systems.
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5-34  (a) g(w) = (ZE)_UZ f V(t)(cosw t—isinw t)dt , V(t)sinwt is an odd function so this

1P

: . : nY 2 sinwt
integral vanishes leaving g(w) =2(27) J Vo coswtdt = p Vo
0

sketch of g(w) is given below.



7 7
(b) As the major contribution to this pulse comes from w’s between —— and —, let
T T

Aw Z and since At=7.
T

T
AwAt = (—)r =7
T

Al 1
(c) Substituting At =05 us in Aw = %t we find — = —) -1x10° Hz.

2t 2(0.5x107 s
As the range is 2Af, the range is 2 x10° Hz. For At =05 ns, the range is

2Af =2x10” Hz.
5-35  (a)

| ikx A T a2(k-k) ik A T (P -(2koina? )
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. Now complete the square in order to get the integral into the standard form
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where z=k—(k0 +l—x2).Since f ez =T, flx) =
2a a

z=—00 - aﬁ

real part of f(x), Re f(x) is Ref(x) = %e‘xua * cos kox and is a gaussian
a

2 a2
e ™ [ ¢*™  The

envelope multiplying a harmonic wave with wave number k. A plot of Re f(x)
is shown below:



cos kyx

(xf28x) g

x% 4a

A 2
Comparin e to Ae”
Paring 2

implies Ax=c .

1 1 1 1
(0 By same reasoning because o = ek Ak = p Finally AxAk= a( Z) =5

1 h
5-36 E=K-= Emu2 =hf and A = Pt Uphase = fA = 2 Uphase- This is different from

the speed u at which the particle transports mass, energy, and momentum.

6-2 (a) Normalization requires

o L 2w x (A% L
1= = A% (7 cos?| —=|dx = 7
f_m|zp|2dx f__&cos ( T )dx

2mx 2
63 (a) Asin(T) - Asin(5x10"x) so (Tﬂ) =5x10° m™,

2
A=——r=126x10"" m.
5x10

(b) p=—=——-"-526x10"* kg m/s



2
© K =2p—m m=911x10"" kg
2

(52610 kg m/s)
 (2x9.11x107" kg)

_ 152x10™7 ]
16x107" JfeV

-152x107"J

=95 eV

The time development of W is given by Equation 6.8 or
k- Ca ) « {ikx —iw(k)t—azkz}
W(x, £) = falk)e’ =60 g - (—) dk,
(5 1) =l e
2

hk
with w(k) = S for a free particle of mass m. As in Example 6.3, the integral may be

reduced to a recognizable form by completing the square in the exponent. Since

ht) > : 1 2020 : 2 o It
w(k)t = o k*, we group this term together with a”k” by introducing p° =a” + g™ to
get
L2 2
kx - o(k)t -’k =-( k-ﬁ) - .
ool - = pr- 25| -
Then, changing variables to z = k —% gives

‘Ij(x, t) = (%)e‘xzﬂﬁzf:e—zz =(C_/;x)e—x2/4ﬁ2 '

To interpret this result, we must recognize that §is complex and separate real

d imagi ts. Th |2r 2 htzdth tfor Wi
an lmaglnary par S. us, /3 = +2m = + Zm an eeXpOnen or 1S

nt
2 “la? - — 2
X 2m . .
= + (1mag1nary terms)

T T B P

then

h’(x/ t)l =%e{—xz/[él{azﬂhtpma)z}]}'
[ (5

We see that apart from a phase factor, W(x, t) is still a gaussian but with amplitude
2\ 12

nt
)J where a = Ax(0) is

2ma

(
diminished by ﬁ and a width Ax(t) = Laz +(

[+ (&)

the initial width.



