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Experiment 2:  Oscillation and Damping in the LRC Circuit 
 
Introduction 
 
 In this laboratory you will construct an LRC series circuit and apply a constant voltage over it.  You 
will view the voltage drop over the various elements of the circuit with the oscilloscope.  You must 
change the order of the circuit elements in order to avoid shorting your circuit, but you will only 
construct one type of circuit throughout this experiment (LRC series).  Also, this laboratory does not 
introduce much new physics to you since many of these topics have been covered in the previous two 
experiments.  On the other hand, this experiment contains several new definitions and a more 
complicated differential equation, which result in a longer mathematical analysis. 
 
 
1 Physics 
 
1.1 Review of Kirchhoff’s Law 

Kirchhoff’s Law states that in any closed loop of a circuit the algebraic sum of the voltages of the 
elements in that loop will be zero.  “Algebraic” simply means signed.  Elements in the circuit may either 
increase (add) voltage or drop (subtract) voltage. 

 
1.2 Voltage Drops Over Various Circuit Elements 

Resistors, capacitors and inductors have well known voltage drops at direct current (DC) flows 
through those elements.  Ohm’s Law describes that the voltage drop across a resistor is proportional to 
the current and the resistance: 

  
VR = IR  (1) 

 
The voltage drop across a capacitor is proportional to the charge held on either side of the capacitor.  

The charge is not always useful in equations mainly in terms of current, but luckily the charge on a 
capacitor is the integrated current over time: 
 

VC =
Q
C

=
1
C

Idt∫  (2) 

 
 An inductor is a tightly wound series of coils through which the current flows.  A fairly uniform 
magnetic field is created on the interior of these coils.  If the current changes so does the magnetic field 
and an induced current is produced. The previous statement is a result of the well-known physical law 
known as Faraday’s Law.  The voltage drop is proportional to the change in the magnetic field and 
therefore the change in the current: 
 

VL = L
dI
dt

 (3) 

 
Also, the coils in inductors often have non-negligible resistance. 
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1.3 Energy Storage in Capacitors and Inductors 
Where resistors simply give off energy by radiating heat, capacitors and inductors store energy.  

The energy stored in each is listed below: 
 

EC =
1
2

CV 2

EL =
1
2

LI 2
 

(4) 
 

(5) 

 
 
 

2 Mathematical Circuit Analysis 
 
2.1 The LRC Series Circuit 

In Figure 1 below the circuit you will later construct is shown.  Using Kirchhoff’s Law we have: 
 

VS + VL + VC + VR = 0  (6) 
 

 
Figure 1  LRC circuit for this experiment 

 
Using Equations 1, 2 and 3 in Equation 6 results in: 

 

VS − L
dI
dt

−
1
C

Idt∫ − IR = 0  (7) 

 
 Now let us assume that VS  is constant in time.  In this experiment you will be using a square wave 
with a large period to produce constant voltage.  Next let us differentiate equation 7 with respect to time 
in order to eliminate the integral and the constant term VS .  Equation 7 becomes: 
 

−L
d2I
dt 2 −

1
C

I − R
dI
dt

= 0   →    
d2I
dt 2 +

R
L

dI
dt

+
1

LC
I = 0  (8) 

 
Assuming a solution of the form I = I0e

αt  we substitute into equation 8 and obtain 
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Question 2.1 
 
What is the propagated error of ω0  (equation 11)?  That is, what is ∆ω0 ? 

α 2 +
R
L

α +
1

LC
= 0  (9) 

 
Solving using the quadratic formula we have: 
 

α = −
R

2L
±

1
2

R2

L2 −
4

LC
 (10) 

 
 When the resistor is absent and there is no resistance from any other source the solution is: 
 

α = ± −
1

LC
= ±iω0  where ω0 =

1
LC

 (11) 

 

 
 Our goal in defining ω0 , besides making broader connection to other physical circuits, is to 
simplify α .  Other helpful term which will help us simplify α  is listed below with the simplified 
version of α : 
  

τ ≡
L
R

α = −
1

2τ
±

1
4τ 2 − ω0

2

 

(12) 
 
 

(13) 
 
 This approach has given us a general solution to the differential equation (8), but depending on the 
relation between 1

2ω0
 & τ , the solution can be very different.  Let us define a critical value of the 

time constant τ 1. 
 

τC ≡
1

2ω0

 (14) 

 
 If τ = τC , there is no oscillation at all because the discriminant in Equation 13 is 0, and the system 
is called critically damped.  For τ < τC  the discriminant is positive and the system is called overdamped.  
In either case, we say that the oscillator is aperiodic which means that there is no period.   

                                                 
1 Please take note that τ  is not defined the same way in this experiment as it was in experiment 1. τ  is 
NOT the decay time in this experiment. 
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 The case that is of main interest to us is when τ > τC , called underdamped. The discriminant is 
negative and this yields an imaginary part to α .  Figure 2 illustrates the behavior of each of the three 
cases beginning at t = 0 from rest with an initial displacement of I0 for various values of the quantity τ. 
 

               
 Underdamped (τ > τC )    Critical (τ = τC )       Overdamped (τ < τC ) 

 
Figure 3 Three régimes for damping behavior. 

 
 

2.2 The Underdamped Oscillator 
 For the underdamped case, the imaginary part of the solution corresponds to the angular frequency 
of the oscillatory part of the current (and voltage). 
 

α = −
1
2τ

± iω  (15) 

 
where: 
 

ω = ω0
2 −

1
4τ 2 =

1
LC

−
R2

4L2  (16) 

 
and thus, the solution to the differential equation (8) is: 
 

I(t) = I0e
− t

2τ e± iω t  (17) 
  
 This solution is the product of the two types of functions that you were exposed to in Experiment 1: 
a decaying exponential and an oscillator (from the imaginary argument).  Since we are not going to 
worry about "boundary conditions" of what happens when the square wave makes its transition, we are 
allowed to pick some convenient piece of eiω t , for example sin(ωt), as the "physical" solution: 
 

I(t) = I0e
−t

2τ sinωt  (18) 
 
 If one wished to verify this equation, she or he could do so by inserting this into equation 8.  The 
result of result of such an exercise would be the left side equally exactly zero after inserting equations 12 
and 15. 
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Question 2.2 
 
Could we use cos(ωt)  instead of sin(ωt)  in equation 18?  Why or why not? 

 
 
 Observe that R has two effects on the circuit.  First, it causes the amplitude of the oscillation (i.e., 
the maximum excursion during a cycle) to decrease steadily from one cycle to the next.  The factor 
e−t /2τ  is responsible for this; it is commonly called the envelope of the oscillation, for a reason evident in 
Figure 4.  Secondly, the frequency of the oscillation is altered, since we see that ω 2  and ω0

2  now differ 
by 1 / 4τ 2 .  
 

 
Figure 4  Exponentially underdamped current I(t) with envelope defined by time constant τ = L

R . 
 
 In the previous experiment, the decay time of the RC circuit was stated as τ = RC .  In this 
experiment, we have used the Greek letter τ  to represent L

R , which is not the decay time of the 
envelope of the underdamped LRC series circuit. The decay time of the LRC series circuit is the time 
when the exponential factor has become 1/e, i.e., when the exponent is minus one.  Thus, the decay time, 
tD , is: 
 

tD = 2τ  (19) 
 
 We will now show that for cases where the decay is not too rapid, or more specifically, when 
several oscillations occur in a decay time, the difference between the damped and undamped frequencies 
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(ω  and ω0 ) is very slight.  First suppose there is some number (n) of oscillations in one decay time (n is 
not necessarily an integer).  Then, since there is one oscillation every T = 2π / ω  seconds, 
 

n =
tD

T
=

ωtD

2π
=

ωτ
π

 (20) 

and so 
ωτ = πn (21)

 
The ratio of ω0  to ω  can be obtained from equation 16 by first squaring both sides and then dividing 
the equation by ω 2 :  
 

ω0
2

ω 2 = 1+
1

4ω 2τ 2  (22) 

 
We note that ω0 ω = f0 f  and use equation 21 to obtain 
 

ω0

ω
⎛
⎝⎜

⎞
⎠⎟

2

=
f0

f
⎛
⎝⎜

⎞
⎠⎟

2

= 1+
1

4π 2n2  (23) 

 
 
2.3 The Quality Factor 
 The most widely used measure of oscillator decay is the "quality factor" Q, which can be defined by 
 

Q = ω 0τ  (24) 
 
It is only well defined (or, rather, there is only a well-agreed definition of Q) when it is somewhat 
greater than one.  In this case it is also true that ω ≈ ω0.  Starting with equation 22 we obtain 
 

ω 0

ω
⎛
⎝⎜

⎞
⎠⎟

2

= 1+
1

4Q2

ω0

ω
⎛
⎝⎜

⎞
⎠⎟

2

 (25) 

   
which can be solved for ω0 / ω   to give 
 

ω 0

ω
=

f0

f
= 1−

1
4Q2

⎛
⎝⎜

⎞
⎠⎟

−1/2

 (26) 

 

For example, if Q = 2, 
ω

ω0  = 1.033 and ω0 is just 3.3% larger than ω.  Thus, for Q not too small, we may 

approximate ω by ω0.  Using this approximation, we can combine Equations 14 and 11 to give the 
convenient expression 
 

Q = πn (27) 
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where n is the number of cycles per decay time. 
 
 The quality factor, Q, is often a source of confusion so it may be helpful to analyze Q using an 
alternate definition as well.  This definition describes Q’s relationship to energy lost during each cycle. 
 
 Let us analysis an undamped oscillator in terms of energy conservation.  Take R = 0 for a moment.  
Now we can show energy is conserved and is moving back and forth between L and C.  For a 
sinusoidally varying current  
 

I = I0 sinω0t  (28) 
 
and using equation 5 the energy stored in the inductor becomes 
 

EL =
1
2

LI0
2 sin2 ωt  (29) 

 
Then for capacitance 
 

VC =
1
C

Idt∫ = −
I0

ω0C
cosω0t  (30) 

 
  
and the energy stored in the capacitor is 
 

EC =
1
2

I0
2

ω0
2C

cos2 ω 0t  (31) 

 
The total energy in the circuit is conserved since the sum is constant as shown below. 
 

EC + EL =
1
2

I0
2 L sin2 (ω0t) +

cos2 (ω0t)
C / LC

⎛
⎝⎜

⎞
⎠⎟

=
LI0

2

2

 (32) 

 

Here we have used the fact that since R = 0, ω 2 = ω 0
2 =

1
LC

. 

 
 You may see from the preceding steps that the energy in the inductor is a maximum when the 
energy in the capacitor is zero, and vice versa, because one is a sine and the other a cosine function.  A 
consequence of this is that you only need to keep track of peak energy in the inductor to follow the 
cycle-to-cycle energy situation in the circuit. 
 Now, consider the situation where R ≠ 0 .  In this case, the stored energy is eventually lost because 
the current is flowing back and forth from inductor to capacitor and the power loss (I2R) in the resistor 
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Question 2.3 
 
What is the propagated error of the quality factor, Q, as a function of measured values and 
uncertainties for R, L and C??  That is, what is ∆Q ? 

equals the rate of energy decrease.  The amount of energy which the resistor removes each cycle of 
oscillation is 
 

Eloss /cycle = I 2Rdt
0

T

∫ = I0
2R sin2 (ωt)dt

0

T

∫ = I0
2 RT

2
 (33) 

 
We are now in a position to define Q in an energy picture and compare to the previous definition.  We 
may say, as an alternate definition, 
 

Q = 2π
Energy of Oscillation

Energy lost in one cycle
 (34) 

  
which, using Equations 32 and 33, translates to 
 

Q = 2π

1
2

LI0
2

1
2

RI0
2T

= 2π f
L
R

= ωτ  (35) 

 
which agree with Equation 24 when ω ≈ ω0. Thus, the quality factor is the inverse of the fractional 
energy loss each radian of a cycle. 
 
 
Let us summarize the descriptive formulas 
 

 Time dependence I(t) = I0e
− t /2τ sinωt   for τ = L / R  (36) 

 Ringing frequency ω = ω0
2 −

1
4τ 2   for ω0 =

1
LC

 (37) 

 Decay time tD = 2τ = 2
L
R

 (38) 

 Quality factor Q = ω0τ = ω 0
L
R

=
1
R

L
C

 (39) 

 Critical damping Rcritical = 2ω0L = 2
L
C

 (40) 

 

3 The Experiment 
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Question 2.4 – (MANDATORY) 
 
What are your values for R, C, and L such that the requirements above are fulfilled? 
 
Hint- Determine C and L by guessing and checking in the ω0  formula first. Recall ω ≈ ω0. Then 
guess R until you find Q in the correct range. 

3.1 Target Values for R, L and C 
 With the mathematical analysis in the preceding sections in mind you will probably guess that it can 
be tricky to choose R, L and C so that you view a “nice” underdamped oscillator.  Below is a table with 
the listed options for R, L and C. 
 

Circuit Element Options 
Resistor (R) 10, 51, 100, 200, 510, and 1000 Ω  

There is also a variable resistor.∗ 
Inductor (L) 0.55, 2.5, 5 and 10mH (milli Henry) 

Capacitor (C) 0.001, 0.01, 0.1 and 1.0µF (micro Farad) 
 
Recall that both the inductor and the signal generator also have resistance, and thus the total resistance is 
 

Rtotal = R + RL + RS  (41) 
  

Assume for preliminary calculations that RS = 50Ω  and RL = 25Ω . 
 
 We would like to see several oscillations in a single decay time.  This corresponds to n being 
between one and four.  More oscillations would make it difficult to make measurements.  Since Q = πn , 
then the appropriate range for the value of Q is 4 < Q < 15 . 
 
 Also, the frequency is limited by the peak value that the signal generator can produce.  Its peak 
linear frequency is ~1Mhz (thus, f < 1Mhz and ω < 107  rad/s). 
 
 

 
 
3.2 Determining Q and ω  Experimentally 

First calibrate your oscilloscope.  See Experiment 0 for details. 
 
 Measure the capacitance and resistance of the pertinent elements in your circuit.  Assume the 
inductance of the inductor is correct with a 10% margin of error. 
 Construct the LRC circuit as diagrammed in Figure 5.  To measure the natural oscillation frequency 
for your circuit in the lab, you must first get the oscillations going and obtain a suitable display on your 
scope screen.  This can be difficult but just experiment with the large scale knobs until you have the 
display you desire.   
                                                 
∗ When using the variable resistor, measure your final resistance with the multimeter. 
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 It is recommended that you use the signal generator as an “external trigger” to provide a stable 
scope trace.  To do so, use a BNC cable to connect the TTY outlet from the signal generator (the middle 
one) to the external trigger input on the lower right of the oscilloscope.  There are several switches 
above the external trigger input.  The first two must be lowered to external.  When they are set to auto, 
the oscilloscope uses its internal ground. 

 

 
 

Figure 5  Addition of the oscilloscope to the LRC circuit 
 
 By measuring the time between two nodes (= 0.5*T) on the oscilloscope you can determine the 
period, T, of the oscillatory part of the voltage function.  This is the inverse of the frequency, f.   
 
 How can you determine empirically the circuit Q from measurements of the scope trace?  One 
simple method is to make use of Equation 27.  Think through in advance each measurement that you 
will want to perform in the lab.  
 
 Finding the decay time, tD , may be useful to you in finding Q.  The decay time can be found 
accurately by measuring the amplitude of the “peaks” (which define the envelope of the decay) at 
various times during the oscillations (refer back to Figure 2).  Measure the amplitude (with uncertainty) 
and time of the “peaks” you observe, trying to obtain at least ten points.  Using ORIGIN plot the 
amplitude (with error bars) as a function of time, and fit the data to an exponential decay (i.e. 

VR (t) = V0e
−t

2τ ).  From the coefficients of the fit, determine a value (with uncertainty) of the decay time 
(Equation 38).  From the decay time and Equation 20, determine the value of the Q from Equation 27. 
 
 
3.3 Critical Resistance at Critical Damping 
 Critical damping occurs when τ = τC = 1 2ω 0 and in general τ = L R .  You can determine the 
critical damping resistance empirically in the lab by inserting the variable resistor into your circuit and 
slowly increasing its resistance while watching the scope trace to see when the oscillations just cease.  L 
and ω0  will remained fixed during this process.  By summing the variable resistance to the other circuit 
resistances (i.e. resistance from the signal generator and inductor), you can compare the actual measured 
result with the result of your calculation. 
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Question 2.5 
 
Derive the formula for critical resistance (Equation 40).  Read section 3.3. 

 
3.4 Unknown Inductor 

Finally, in the laboratory there are several different "unknown" inductors identified only by a 
number.  Select one of these and determine its inductance as well as you can use only the equipment 
listed above.  Devise your own method and describe it in your report.  Be sure to give the unknown 
inductor number, its value as determined by your measurements, and the error limits you feel are 
appropriate. 

Think about the techniques you have used thus far in the lab and examine the summary of equations 
searching for L. 
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Analysis 
Compute the following: 
• Theoretical resonance frequency from L, R and C; 
• Theoretical quality factor from L, R and C; 
• Theoretical τ  from L and R; 
• Experimental quality factor from experimental data (from n); 
• Comparison of resonance frequency to theoretical resonance frequency; 
• Comparison of quality factor to theoretical quality factor; 
• Comparison of fitted τ  to theoretical τ . 
 

Discuss your procedure for finding the inductance of the unknown inductor.  State your experimental 
inductance. 
 
Conclusions 
 Highlight the themes of the lab and the physics the experiment verifies.  You should discuss the 
errors you encounter in the lab and how you could improve the lab if you had to repeat it.  If your results 
are unexpected or your t-values are high, you should identify possible explanations. 
 
 For this experiment, specifically discuss your choice of method for determining the unknown 
inductor’s inductance.  Was it a good choice?  Was there a better way? 
 
 
Hints on reports 
• Write neatly—if your TA cannot read it, you could lose points. 
• Be organized—if your TA cannot find it, you could lose points. 
• Report your data, including plots—if your data is not in your report, your TA does know you did it. 
• Record uncertainty. 
• Propagate uncertainty.  
• Write your final answers with proper significant figures. 


