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Conceptual Foundations

2.1 Introduction

This chapter presents the conceptual foundations of plasma turbulence the-

ory from the perspective of physical kinetics of quasi particles. It is divided

into two sections:

A) Dressed test particle model of fluctuations in a plasma near equilibrium

B) K41 beyond dimensional analysis - revisiting the theory of hydrodynamic

turbulence.

The reason for this admittedly schizophrenic beginning is the rather un-

usual and atypical niche that plasma turbulence occupies in the pantheon of

turbulent and chaotic systems. In many ways, most (though not all) cases

of plasma turbulence may be thought of as weak turbulence, spatiotem-

poral chaos, or wave turbulence, as opposed to fully developed turbulence

in neutral fluids. Dynamic range is large, but nonlinearity is usually not

overwhelmingly strong. Frequently, several aspects of the linear dynamics
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persist in the turbulent state, though wave breaking is possible, too. While

a scale-to-scale transfer is significant, emission and absorption locally, at

a particular scale, are not negligible. Scale invariance is usually only ap-

proximate, even in the absence of dissipation. Indeed, it is fair to say that

plasma turbulence lacks the elements of simplicity, clarity and universality

which have attracted many researchers to the study of high Reynolds number

fluid turbulence. In contrast to the famous example, plasma turbulence is a

problem in the dynamics of a multi-scale and complex system. It challenges

the researchers to isolate, define and solve interesting and relevant thematic

or idealized problems which illuminate the more complex and intractable

whole. To this end, then, it is useful to begin by discussing two rather dif-

ferent ’limiting case paradigms’, which is some sense ’bound’ the position of

most plasma turbulence problems in the intellectual realm. These limiting

cases are:

- The test particle model (TPM) of a near-equilibrium plasma, for which

the relevant quasi-particle is a dressed test particle,

- The Kolmogorov (K41) model of a high Reynolds number fluid, very far

from equilibrium, for which the relevant quasi-particle is the fluid eddy.

The TPM illustrates important plasma concepts such as local emission and

absorption, screening response and the interaction of waves and sources.

The K41 model illustrates important turbulence theory concepts such as

scale similarity, cascades, strong energy transfer between scales and tur-

bulent dispersion. We also briefly discuss turbulence in two-dimensions -

very relevant to strongly magnetized plasmas - and turbulence in pipe flows.

The example of turbulent pipe flow, usually neglected by physicists in def-

erence to homogeneous turbulence in a periodic box, is especially relevant
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to plasma confinement, as it constitutes the prototypical example of eddy

viscosity and mixing length theory, and of profile formation by turbulent

transport. The prominent place accorded in engineering texts to this decep-

tively simple example is no accident - engineering, after all, need answers to

real world problems. More fundamentally, just as the Kolmogorov theory is

a basic example of self-similarity in scale, the Prandtl mixing length theory

nicely illustrates self-similarity in space. The choice of these particular two

paradigmatic examples is motivated by the huge disparity in the roles of

spectral transfer and energy flux in their respective dynamics. In the TPM,

spectral transport is ignorable, so the excitation at each scale k is deter-

mined by the local balance of excitation and damping at that scale. In the

inertial range of turbulence, local excitation and damping are negligible, and

all scales are driven by spectral energy flux - i.e., the cascade - set by the

dissipation rate. (See Fig.2.1 for illustration.) These two extremes corre-

spond, respectively, to a state with no flux and a flux-driven state, in some

sense ’bracket’ most realizations of (laboratory) plasma turbulence, where

excitation, damping and transfer are all roughly comparable. For this rea-

son, they stand out as conceptual foundations, and so we begin out study

of plasma turbulence with them.

2.2 Dressed Test Particle Model of Fluctuations in a Plasma

near Equilibrium

2.2.1 Basic Ideas

Virtually all theories of plasma kinetics and plasma turbulence are con-

cerned, in varying degrees, with calculating the fluctuation spectrum and

relaxation rate for plasmas under diverse circumstances. The simplest, most
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Fig. 2.1. (a)Local in k emission and absorption near equilicrium. (b)Spectral trans-

port from emission at k1, to absorption at k2 via nonlinear coupling in a non-

equilibrium plasma.

successful and best known theory of plasma kinetics is the dressed test parti-

cle model of fluctuations and relaxation in a plasma near equilibrium. This

model, as presented here, is a synthesis of the pioneering contributions and

insights of Rosenbluth, Rostoker, Balescu, Lenard, Klimontovich, Dupree,

and others. The unique and attractive feature of the test particle model is

that it offers us a physically motivated and appealing picture of dynamics

near equilibrium which is entirely consistent with Kubo’s linear response

theory and the fluctuation-dissipation theorem, but does not rely upon the

abstract symmetry arguments and operator properties which are employed

in the more formal presentations of generalized fluctuation theory, as dis-

cussed in texts such as Landau and Lifshitz’ “Statisical Physics”. Thus, the

test particle model is consistent with formal fluctuation theory, but affords

the user far greater physical insight. Though its applicability is limited to

the rather simple and seemingly dull case of a stable plasma ‘near’ thermal

equilibrium, the test particle model nevertheless constitutes a vital piece of

the conceptual foundation upon which all the more exotic kinetic theories
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are built. For this reason we accord it a prominent place it in our study,

and begin our journey by discussing it in some depth.

Two questions of definition appear immediately of the outset. These are:

a) What is a plasma?

b) What does ‘near-equilibrium’ mean?

For our purposes, a plasma is a quasi-neutral gas of charged particles with

thermal energy far in excess of electrostatic energy (i.e. kBT À q2/r̄), and

with many particles within a Debye sphere (i.e. 1/nλ3
D ¿ 1), where q is

a charge, r̄ is a mean distance between particles, r̄ ∼ n−1/3, n is a mean

density, T is a temperature, and kB is the Boltzmann constant. The first

property distinguishes a gaseous plasma from a liquid or cristal, while the

second allows its description by a Boltzmann equation. Specifically, the

condition 1/nλ3
D ¿ 1 means that discrete particle effects are, in some sense,

‘small’ and so allows truncation of the BBGKY hierarchy at the level of

a Boltzmann equation. This is equivalent to stating that if the two body

correlation f(1, 2) is written in a cluster expansion as f(1)f(2) + g(1, 2),

then g(1, 2) is of O(1/nλ3
D) with respect to f(1)f(2), and that higher orders

correlations are negligible. Figure 2.2 illustrates a test particle surrounded

by many particle in a Debye sphere. The screening on the particle ‘A’ is

induced by other particles. When the particle ‘B’ is chosen as a test particle,

others (including ‘A’) produce screening on ‘B’. Each particle acts the role

of test particle and the role of screening for other test particle.

The definition of ‘near equilibrium’ is more subtle. A near equilibrium

plasma is one characterized by:

1) a balance of emission and absorption by particles at a rate related to the

temperature, T
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Fig. 2.2. A large number of particles exist within a Debye sphere of particle ‘A’

(shown by red) in (a). Other particles provide a screening on the particle ‘A’. When

the particle ‘B’ is chosen as a test particle, others (including ‘A’) produce screening

on ‘B’ (b). Each particle acts the role of test particle and the role of screening for

other test particle.

2) the viability of linear response theory and the use of linearized particle

trajectories.

Condition 1) necessarily implies the absence of linear instability of collective

modes, but does not preclude collectively enhanced relaxation to states of

higher entropy. Thus, a near-equilibrium state need not to be one of max-

imum entropy. Condition 2) does preclude zero frequency convective cells

driven by thermal fluctuations via mode-mode coupling, such as those which

occur in the case of transport in 2D hydrodynamics. Such low frequency

cells are usually associated with long time tails and require a renormalized

theory of the non-linear response for their description as is discussed in later

chapters.

The essential element of the test particle model is the compelling physical
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Fig. 2.3. Schematic drawing of the emission of the wave by one particle and the

absorption of the wave.

picture it affords us of the balance of emission and absorption which are

intrinsic to thermal equilibrium. In the test particle model (TPM), emis-

sion occurs as a discrete particle (i.e. electron or ion) moves through the

plasma, Cerenkov emitting electrostatic waves in the process. This emission

process creates fluctuations in the plasma and converts particle kinetic en-

ergy (i.e. thermal energy) to collective mode energy. Wave radiation also

induces a drag or dynamical friction on the emitter, just as the emission of

waves in the wake of a boat induces a wave drag force on the boat. Proxim-

ity to equilibrium implies that emission is, in turn, balanced by absorption.

Absorption occurs via Landau damping of the emitted plasma waves, and

constitutes a wave energy dissipation process which heats the resonant par-

ticles in the plasma. Note that this absorption process ultimately returns

the energy which was radiated by the particles to the thermal bath. The

physics of wave emission and absorption which defines the thermal equilib-

rium balance intrinsic to the TPM is shown in Fig.2.3.

A distinctive feature of the TPM is that in it, each plasma particle has a
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‘dual identity’, both as an ‘emitter’ and an ‘absorber’. As an emitter, each

particle radiates plasma waves, which is moving along some specified, linear,

unperturbed orbit. Note that each emitter is identifiable (i.e. as a discrete

particle) while moving through the Vlasov fluid, which is composed of other

particles. As an absorber, each particle helps to define an element of the

Vlasov fluid responding to, and (Landau) damping the emission from, other

discrete particles. In this role, particle discreteness is smoothed over. Thus,

the basic picture of an equilibrium plasma is one of a soup or gas of dressed

test particles. In this picture, each particle:

i.) stimulates a collective response from the other particles by its discrete-

ness

ii.) responds to on ‘dresses’ other discrete particles by forming part of the

background Vlasov fluid.

Thus, if one views the plasmas as a pea soup, then the TPM is built on the

idea that ‘each pea in the soup acts like soup for all the other peas’. The

dressed test particle is the fundamental quasi-particle in the description of

near-equilibrium plasmas. Examples for dressing by surrounding media are

illustrated in Fig.??. In a case of a sphere in fluid, the surrounding fluid

moves with it, so that the effective mass of the sphere (defined by the ratio

between the external force to the acceleration) increases by an amount of

(2π/3) ρa3, where a is a radius of the sphere and ρ is a mass density of the

surrounding fluid. The supersonic object radiates the wake of waves (b),

thus its motion deviates from one in vacuum.

At this point, it is instructive to compare the test particle model of thermal

equilibrium to the well-known elementary model of Brownian fluctuations
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Fig. 2.4. Dressing of moving objects. Examples like a sphere in a fluid (a) and a

supersonic object (b) are illustrated. In a case of a sphere, the surrounding fluid

moves with it, so that the effective mass of the sphere (measured by the ratio

between the acceleration to the external force) increases. The supersonic object

radiates the wake of sound wave.

of a particle in a thermally fluctuating fluid. This comparison is given in

Table 2.1, below.

Predictably, while there are many similarities between Brownian particle

and thermal plasma fluctuations, a key difference is that in the case of

Brownian motion, the roles of emission and absorption are clearly distinct

and played, respectively, by random forces driven by thermal fluctuations

in the fluid and by Stokes drag of the fluid on the finite size particle. In

contrast, for the plasma the roles of both the emitter and absorber are played

by the plasma particles themselves in the differing guises of discreteness and

as chunks of the Vlasov fluid. In the cases of both the Brownian particle

and the plasma, the well-known fluctuation-dissipation theorem of statistical

dynamics near equilibrium applies, and relates the fluctuation spectrum to
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Table 2.1. Comparison of Brownian particle motion and plasma

fluctuations.

Brownian Motion Equilibrium Plasma

Excitation vω → velocity mode
Ek,ω →

Langmuir wave mode

Fluctuation spectrum
〈
ṽ2

〉
ω

〈
E2

〉
k,ω

Emission Noise

〈
ã2

〉
ω
→ 4πqδ(x − x(t)) →

random acceleration by particle discreteness

thermal fluctuations source

Absorption Stokes drag on particle
Im ε →Landau damping of

collective modes

Governing Equations
dṽ

dt
+ βṽ = ã ∇·D = 4πqδ(x−x(t))

the temperature and the dissipation via the collective mode dissipation, i.e.

Im ε(k, ω), the imaginary part of the collective response function.

2.2.2 Fluctuation spectrum

Having discussed the essential physics of the TPM and having identified the

dressed test particle as a the quasi-particle of interest for the dynamics of

near equilibrium plasma, we now proceed to calculate the plasma fluctua-

tion spectrum near thermal equilibrium. We also show that this spectrum

is that required to satisfy the fluctuation-dissipation theorem (F-DT). Sub-

sequently, we use the spectrum to calculate plasma relaxation.

2.2.2.1 Coherent response and particle discreteness noise

As discussed above, the central tenets of the TPM are that each particle is

both a discrete emitter as well as a participant in the screening or dressing

cloud of other particles and that the fluctuations are weak, so that linear
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Fig. 2.5. Schematic drawing of the distribution of plasma particles. The distribu-

tion function, f (x, v), is divided into the mean 〈f〉, the coherent response f c, and

the fluctuation part owing to the particle discreteness f̃ .

response theory applies. Thus, the total phase space fluctuation δf is written

as;

δf = f c + f̃ , (2.1)

where f c is the coherent Vlasov response to an electric field fluctuation, i.e.

f c
k,ω = Rk,ωEk,ω,

where Rk,ω is a linear response function and f̃ is the particle discreteness

noise source, i.e.

f̃(x, v, t) =
1
n

N∑
i=1

δ(x − xi(t))δ(v − vi(t)) − 〈f〉 − f c (2.2)

(See, Fig.2.5). For simplicity, we consider high frequency fluctuations in an

electron-proton plasma, and assume the protons are simply a static back-

ground. Consistent with linear response theory, we use unperturbed orbits
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to approximate xi(t), vi(t) as:

vi(t) = vi(0) (2.3a)

xi(t) = xi(0) + vit. (2.3b)

Since kBT À e2/r̄, the fundamental ensemble here is one of uncorrelated,

discrete test particles. Thus, we can define the ensemble average of a quan-

tity A to be

〈A〉 = n

∫
dxi

∫
dvi f0(vi, xi) A (2.4)

where xi and vi are the phase space coordinates of the particles and f0 is

same near equilibrium distribution, such as a local Maxwellian. For a Vlasov

plasma, which obeys

∂f

∂t
+ v

∂f

∂x
+

q

m
E

∂f

∂v
= 0 (2.5a)

the linear response function Rk,ω is:

Rk,ω = −i
q

m

∂ 〈f〉 /∂v

ω − kv
. (2.5b)

Self-consistency of the fields and the particle distribution is enforced by

Poisson’s equation

∇2φ = −4π
∑

s

nsqs

∫
dv δfs (2.6a)

so that the potential fluctuation may be written as

φk,ω = −4πn0q

k2

∫
dv

f̃k,ω

ε(k, ω)
, (2.6b)

where the plasma collective response or dielectric function ε(k, ω) is given

by:

ε(k, ω) = 1 +
ω2

p

k

∫
dv

∂ 〈f〉 /∂v

ω − kv
. (2.6c)

Note that Eqs.(2.6) relates the fluctuation level to the discreteness noise

emission and to ε(k, ω), the linear collective response function.
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2.2.2.2 Fluctuations driven by particle discreteness noise

A heuristic explanation is given here that the ‘discreteness’ of particles in-

duces fluctuations. Consider a case that charged particles (charge q) are

moving as is shown in Fig.2.6(a). Distance between particles is given by

, and particles are moving at the velocity u. (The train of particles in

Fig.2.6(a) is a part of distribution of particles. Of course, the net field is

calculated by accumulating contributions from all particles.) Charged parti-

cles generate the electric field. The time-varying electric field (measured at

the position A) is shown in Fig.2.6(b). When we make one particle smaller,

but keeping the average density constant, the oscillating field at A becomes

smaller. For instance, if the charge of one particle becomes half q/2 while

the distance between particles becomes half, we see that the amplitude of

varying electric field becomes smaller while the frequency becomes higher.

This situation is shown in Fig.2.6(b) by a dashed line. In the limit of conti-

nuity, i.e.,

Charge per particle → 0

Distance between particle → 0,

while the average density is kept constant, the amplitude of fluctuating field

goes to zero. This example illustrates why ‘discreteness’ induces fluctua-

tions.

Before proceeding with calculating the spectrum, we briefly discuss an

important assumption we have made concerning collective resonances. For

a discrete test particle moving on unperturbed orbits,

f̃ ∼ qδ(x − x0i(t))δ(v − vi)
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Fig. 2.6. Schematic illustration that the discreetness of particles is the origin of

radiations. A train of charged particles (charge q, distance d) are moving near by

the observation point A (a). The vertical component of the electric field observed

at point A (b). When each particle is divided into two particles, (i.e., charge per

particle is q/2 and distance between particles is d/2), the amplitude of observed

field becomes smaller.

so ∫
dv f̃k ∼ qe−ikvt

and

ε(k, t)φk(t) =
4π

k2
qe−ikvt.

Here, the dielectric is written as an operator ε, to emphasize the fact that

the response is non-local in time, on account of memory in the dynamics.

Then strictly speaking, we have

φk(t) = ε−1 ·
[
4πq

k2
e−ikvt

]
+ φk,ωk

e−iωkt. (2.7)

In Eq.(2.7), the first term in the RHS is the inhomogeneous solution driven
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by discreteness noise, while the second term is the homogeneous solution (i.e.

solution of εφ = 0), which corresponds to an eigenmode of the system (i.e.

a fluctuation at k, ω which satisfies ε(k, ω) ' 0, so ω = ωk). However, the

condition that the plasma be ‘near equilibrium’ requires that all collective

modes be damped (i.e. Im ωk < 0), so the homogeneous solutions decay in

time. Thus, in a near equilibrium plasma,

φk(t) −−−→
t→∞

ε−1 ·
[
4πq

k2
e−ikvt

]
,

so only the inhomogeneous solution survives. Two important caveats are

necessary here. First, for weakly damped modes with Im ωk / 0, one may

need to wait quite a long time indeed to actually arrive at asymptopia,

so the homogeneous solutions may be important, in practice. Second, for

weakly damped (‘soft’) modes, the inhomogeneous solution φ̂ ∼ |Im ε|−1

can become large and produce significant orbit scattering and deflection.

The relaxation times of such ‘soft modes’, thus, increase significantly. This

regime of approach to marginality from below is analogous to the approach

to criticality in a phase transition, where relaxation times and correlation

lengths diverge, and fluctuation levels increase. As in the case of critical

phenomena, renormalization is required for an accurate theoretical treat-

ment of this regime. The moral of the story related in this small digression

is that the TPM’s validity actually fails prior to the onset of linear insta-

bility, rather than at the instability threshold, as is frequently stated. The

behavior of fluctuation levels near the stability boundary is schematically

illustrated in Fig.2.7. Even if the modes are stable, enhanced excitation of

eigenmodes is possible when the controlling parameter is sufficiently close to

the boundary of stability, approaching from below. Linear response theory

could be violated even if the eigenmodes are stable.
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Fig. 2.7. Fluctuation level near the stability boundary. Even if the modes are sta-

ble, enhanced excitation of eigenmodes is possible when the controlling parameter

approaches the boundary of stability. Linear theory could be violated even if the

eigenmodes are stable. Nonlinear noise is no longer negligible.

2.2.2.3 Potential fluctuations

Proceeding with the calculation of the spectrum, we first define the spec-

tral density of the potential fluctuation as the transform of the potential

fluctuation correlation function, i.e.

〈
φ2

〉
k,ω

=
∫ ∞

−∞
dx

∫ ∞

0
dt ei(ωt−k·x) 〈φ(0, 0)φ(x, t)〉 (2.8a)

and

〈φ(0, 0)φ(x, t)〉 =
∫ ∞

−∞

dk

(2π)3

∫ ∞

−∞

dω

2π
ei(k·x−ωt)

〈
φ2

〉
k,ω

. (2.8b)

Note that the transformation is a Fourier transform in space but a Laplace

transform in time. The “one-sided” Laplace transform is intrinsic to fluctu-

ation and TPM theory, as both are built upon the idea of causality, along

with assumptions of stationarity and linear response. As linear response

theory applies here, the fluctuation modes are uncorrelated, so

〈φkφk′〉 = (2π)4
〈
φ2

〉
k,ω

δ(k + k′)δ(ω + ω′). (2.8c)
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Therefore, from Eqs.(2.8a)-(2.8c) and Eq.(2.6b), we can immediately pass

to the expression for the potential fluctuation spectrum,

〈
φ2

〉
k,ω

=
(

4πn0

k2
q

)2 ∫
dv1

∫
dv2

〈
f̃(1)f̃(2)

〉
k,ω

|ε(k, ω)|2
. (2.9)

Note that the fluctuation spectrum is determined entirely by the discreteness

correlation function
〈
f̃(1)f̃(2)

〉
and the dielectric function ε(k, ω). More-

over, we know ab-initio that since the plasma is in equilibrium at temper-

ature T , the Fluctuation-Dissipation Theorem applies, so that the TPM

spectrum calculation must recover the general F-DT result, which is;〈
D2

〉
k,ω

4π
=

2T

ω
Im ε(k, ω). (2.10)

Here Dk,ω = ε(k, ω)Ek,ω is the electric displacement vector. Note that the

F-DT quite severely constrains the form of the particle discreteness noise.

2.2.2.4 Correlation of particles and fluctuation spectrum

To calculate
〈
f̃(1)f̃(2)

〉
k,ω

, we must first determine
〈
f̃(1)f̃(2)

〉
. Since f̃ is

the distribution of discrete uncorrelated test particles, we have;

f̃(x, v, t) =
1
n

N∑
i=1

δ(x − xi(t))δ(v − vi(t)). (2.11)

From Eqs. (2.3), (2.4), and (2.11), we obtain〈
f̃(1)f̃(2)

〉
=

∫
dxi

∫
dvi

〈f〉
n

N∑
i,j=1

[δ(x1 − xi(t))

× δ(x2 − xj(t))δ(v1 − vi(t))δ(v2 − vj(t))]. (2.12)

Since the product of δ’s is non-zero only if the arguments are interchangeable,

we obtain immediately the discreteness correlation function〈
f̃(1)f̃(2)

〉
=

〈f〉
n

δ(x1 − x2)δ(v1 − v2). (2.13)
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Equation.(2.13) gives the discreteness correlation function in phase space.

Since the physical model is one of an ensemble of discrete, uncorrelated test

particles, it is no surprise that
〈
f̃(1)f̃(2)

〉
is singular, and vanishes unless

the two points in phase space are coincident. Calculation of the fluctuation

spectrum requires the velocity integrated discreteness correlation function

C(k, ω) which, using spatial homogeneity, is given by:

C(k, ω) =
∫

dv1

∫
dv2

〈
f̃(1)f̃(2)

〉
k,ω

=
∫

dv1

∫
dv2

[ ∫ ∞

0
dτ eiωτ

∫
dx e−ik·x

〈
f̃(0)f̃(x, τ)

〉
+

∫ 0

−∞
dτ e−iωτ

∫
dx e−ik·x

〈
f̃(x,−τ)f̃(0)

〉 ]
. (2.14)

Note that the time history which determines the frequency dependence of

C(k, ω) is extracted by propagating particle (2) forward in time and particle

(1) backward in time, resulting in the two Laplace transforms in the expres-

sion for C(k, ω). The expression for C(k, ω) can be further simplified by

replacing v1, v2 with (v1 ± v2)/2, performing the trivial v-integration, and

using unperturbed orbits to obtain

C(k, ω) = 2
∫

dv

∫ ∞

0
dτ eiωτ

∫
dx e−ik·x 〈f(v)〉

n
δ(x − vτ)

= 2
∫

dv
〈f(v)〉

n

∫ ∞

0
dτ ei(ω−k·v)τ

=
∫

dv 2π
〈f(v)〉

n
δ(ω − k · v). (2.15)

Equation (2.15) gives the well known result for the density fluctuation corre-

lation function in k, ω of an ensemble of discrete, uncorrelated test particles.

C(k, ω) is also the particle discreteness noise spectrum. Note that C(k, ω)

is composed of the unperturbed orbit propagator δ(ω − k · v), a weighting

function 〈f〉 giving the distribution of test particle velocities, and the factor

of 1/n, which is a generic measure of discreteness effects. Substitution of
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C(k, ω) into Eq.(2.9) then finally yields the explicit general result for the

TPM potential fluctuation spectrum:〈
φ2

〉
k,ω

=
(

4πn0

k2
q

)2
∫

dv 2π
n 〈f〉 δ(ω − k · v)
|ε(k, ω)|2

. (2.16)

2.2.2.5 One-dimensional plasma

In order to elucidate the physics content of the fluctuation spectrum, it is

convenient to specialize the discussion to the case of a 1D plasma, for which:

C(k, ω) =
2π

n|k|vT
F (ω/kvT ) (2.17a)

〈
φ2

〉
k,ω

= n0

(
4πq

k2

)2 2π

|k|vT

F (ω/kvT )
|ε(k, ω)|2

. (2.17b)

Here, F refers the average distribution function, with the normalization fac-

tor of vT extracted, 〈f (v)〉 = (n/vT ) F (v), and vT is a thermal velocity. It

is interesting to observe that
〈
φ2

〉
k,ω

∼ (density) × (Coulomb spectrum) ×

(propagator) × (particle emission spectrum) × (screening). Thus, spectral

line structure in the TPM is determined by the distribution of Cerenkov

emission from the ensemble of discrete particles (set by 〈f〉) and the collec-

tive resonances (where ε(k, ω) becomes small).

In particular, for the case of an electron plasma with stationary ions, the

natural collective mode is the electron plasma wave, with frequency ω '

ωp(1 + γk2λ2
D)1/2 (γ: specific heat ratio of electrons). So for ω À ωp, kvT ,

ε → 1, we have; 〈
φ2

〉
k,ω

' n0

(
4πq

k2

)2 2π

|k|vT
F (ω/kvT ), (2.18a)

where F ∼ exp[−ω2/k2v2
T ] for a Maxwellian distribution, while in the op-

posite limit of ω ¿ ωp, kvT where ε → 1 + k−2λ−2
D , the spectrum becomes〈

φ2
〉
k,ω

' n0(4πq)2
2π

|k|vT

(
1 + 1/k2λ2

D

)−2
. (2.18b)
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In the first, super-celerity limit, the discrete test particle effectively decou-

ples from the collective response, while in the second, quasi-static limit, the

spectrum is that of an ensemble of Debye-screened test particles. This re-

gion also corresponds to the kλDe À 1 range, where the scales are too small

to support collective modes. In the case where collective modes are weakly

damped, one can simplify the structure of the screening response via the

pole approximation, which is obtained by expanding about ωk, i.e.

ε(k, ω) = εr(k, ω) + iIm ε(k, ω)

' εr(k, ωk) + (ω − ωk)
∂ε

∂ω

∣∣∣∣
ωk

+ iIm ε(k, ωk). (2.19)

So since εr(k, ωk) ≈ 0,

1/|ε|2 ' 1
|Im ε|

{
|Im ε|

(ω − ωk)2| ∂ε
∂ω |2 + |Im ε|2

}
' 1

|Im ε| |∂εr/∂ω|
· δ (ω − ωk) . (2.20)

Here it is understood that Im ε and ∂εr/∂ω are evaluated at ωk. Notice

that in the pole approximation, eigenmode spectral lines are weighted by

the dissipation Im ε.

The fluctuation spectrum of plasma oscillations in thermal equailibrium

is shown in Fig.2.8. The real frequency and the damping rate of the plasma

oscillation are shown as a function of the wavenumber in (a). In the regime

of kλDe ¿ 1, the real frequency is close to the plasma frequency, ω ∼ ωp, and

the damping rate is exponentially small. The power spectrum of fluctuation

as a function of the frequency is illustrated in (b) for various values of the

wave number. In the regime of kλDe ¿ 1, a sharp peak appears near the

eigenfrequency ω ∼ ωk. Owing to the very weak damping, the line width is

narrow. As the mode number becomes large (in the regime of kλDe ∼ 1), the
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(a) (b)

Fig. 2.8. Illustration of the fluctuation spectrum of plasma oscillations. The real

frequency and the damping rate of the plasma oscillation are shown as a function

of the wavenumber in (a). In the regime of kλDe ¿ 1, ω ∼ ωp holds and that

the damping rate is exponentially small. The power spectrum of fluctuation as a

function of the frequency is illustrated in (b) as a function of the wave number.

In the regime of kλDe ¿ 1, a high and sharp peak appears near the eignfrequency

ω ∼ ωk. Owing to the very weak damping, the line width is narrow. As the

mode number becomes large an in the regime of kλDe ∼ 1, the bandwidth becomes

broader, and the fluctuation intensity becomes high.

bandwidth becomes broader, showing the fact the fluctuations are generated

and absorbed very rapidly.

2.2.2.6 Fluctuation-dissipation theorem and energy partition

By now, the reader is surely anxious to see if the results obtained using

the test particle model are in fact consistent with the requirements and ex-

pectations of generalized fluctuation theory, as advertised. First, we check

that Fluctuation-Dissipation Theorem is satisfied. This is most easily ac-

complished for the case of a Maxwellian plasma. There

Im ε = −
ω2

pπ

k|k|
∂ 〈f〉
∂v

∣∣∣∣
ω/k

=
2πω

k2v2
T

ω2
p

|k|vT
FM(

ω

kvT
), (2.21a)
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so using Eq.(2.21a) to relate Im ε(k, ω) to F (ω/kvT ) in Eq.(2.17b) gives〈
φ2

〉
k,ω

=
8πT

k2ω

Im ε

|ε|2
, (2.21b)

so we finally obtain 〈
D2

〉
k,ω

4π
=

2T

ω
Im ε (2.21c)

is in precise agreement with the statement of the F-DT for a classical, plasma

at temperature T . It is important to re-iterate here that applicability of

the F-DT rests upon to the applicability of linear response theory for the

emission and absorption of each mode. Both fail as the instability marginal

point is approached (from below).

Second, we also examine the k-spectrum of energy, with the aim of com-

paring the TPM prediction to standard expectations for thermal equilib-

rium, i.e. to see whether energy is distributed according to the conventional

wisdom of “T/2 per degree-of-freedom” . To this end, it is useful to write

(using Eq. (2.21)) the electric field energy as;

|Ek,ω|
8π

=
4πnq2

k|k|

{
F (ω/kvT )

(1 − ω2
p

ω2 )2 + (πω2
p

k|k|F
′)2

}
, (2.22)

where εr ' 1 − ω2
p/ω2 for plasma waves, and F ′ = dF/du|ω/k. The total

electric field energy per mode Ek is given by

Ek =
∫

dω |Ek,ω|2/8π, (2.23a)

so that use of the pole approximation to the collective resonance and a short

calculation then gives

Ek =
neωp

2|k|
F

|F ′|
=

T

2
. (2.23b)

So, yes – the electric field energy for plasma waves is indeed equipartioned!

Since for plasma waves the particle kinetic energy density Kk equals the
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electric field energy density Ek (i.e. Kk = Ek), the total wave energy density

per mode Wk is constant at T . Note that Eq. (2.23b) does not imply the

divergence of total energy density. Of course, some fluctuation energy is

present at very small scales (kλDe & 1) which cannot support collective

modes. On such scales, the pole expansion is not valid and simple static

screening is a better approximation. A short calculation gives, for k2λ2
De >

1, Ek
∼= (T/2)/k2λ2

De , so that the total electric energy density is〈
E2

8π

〉
=

∫
dk Ek

=
∫ ∞

−∞

dk

2π

T/2
(1 + k2λ2

De)
∼

(
nT

2

)(
1

nλDe

)
. (2.24)

As Eq. (2.24) is for 1D, there n has the dimensions of particles-per-distance.

In 3D, the analogue of this result is〈
E2

8π

〉
∼

(
nT

2

)(
1

nλ3
De

)
. (2.25)

so that the total electric field energy equals the total thermal energy times

the discreteness factor 1/nλ3
De ∼ 1/N , where N is the number of particles in

a Debye sphere. Hence
〈
E2/8π

〉
¿ nT/2, as is required for a plasma with

weak correlations.

2.2.3 Relaxation Near Equilibrium and the Balescu-Lenard

Equation

Having determined the equilibrium fluctuation spectrum using the TPM,

we now turn to the question of how to use it to calculate relaxation near

equilibrium. By “relaxation” we mean the long time evolution of the mean

(i.e. ensemble averaged) distribution function 〈f〉. Here ‘long time’ means

long or slow evolution in comparison to fluctuation time scales. Generally,

we expect the mean field equation for the prototypical example of a 1D
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electrostatic plasma to have the form of a continuity equation in velocity

space, i.e.

∂ 〈f〉
∂t

= − ∂

∂v
J(v). (2.26)

Here, J(v) is a flux or current and 〈f〉 the corresponding coarse grained phase

space density. J −−−−→
v→±∞

0 assures conservation of total 〈f〉. The essence

of the problem at hand is how to actually calculate J(v)! Of course it is

clear from the Vlasov equation that J(v) is simply the average acceleration

〈(q/m)Eδf〉 due to the phase space density fluctuation δf . Not surprisingly,

then, J(v) is most directly calculated using a mean field approach. Specifi-

cally, simply substitute the total δf into 〈(q/m)Eδf〉 to calculate the current

J(v). Since δf = f c + f̃ , J(v) will necessarily consist of two pieces. The first

piece, 〈(q/m)Ef c〉, accounts for the diffusion in velocity driven by the TPM

potential fluctuation spectrum. This contribution can be obtained from a

Fokker-Planck calculation using the TPM spectrum as the noise. The second

piece,
〈
(q/m)Ef̃

〉
, accounts for relaxation driven by the dynamic friction

between the ensemble of discrete test particles and the Vlasov fluid. It ac-

counts for the evolution of 〈f〉 which must accompany the slowing down of

a test particle by wave drag. The second piece has the structure of a drag

term. As is shown in the derivation of Eq. (2.16), 〈Ef c〉 ultimately arises

from the discreteness of particles, f̃1.

The kinetic equation for 〈f〉 which results from this mean field calcula-

tion was first derived by R.Balescu and A. Lenard, and so is named in their

honor. The diffusion term of the Balescu-Lenard (B-L) equation is very

similar to the quasilinear diffusion operator, discussed in Chapter 3, though

the electric field fluctuation spectrum is prescribed by the TPM and the

frequency spectrum is not restricted to eigenmode frequency lines, as in the
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quasilinear theory. The total phase space current J(v) is similar in structure

to that produced by the glancing, small angle Coulomb interactions which

the Landau collision integral calculates. However, in contrast to the Landau

theory, the B-L equation incorporates both static and dynamic screening,

and so treats the interaction of collective processes with binary encounters.

Screening also eliminates the divergences in the Landau collision integral (i.e.

the Coulomb logarithm) which are due to long range electrostatic interac-

tions. Like the Landau integral, the B-L equation is ultimately nonlinear in

〈f〉.

At this point, the skeptical reader will no doubt be entertaining question

like “What kind of relaxation is possible here?”, “How does it differ from

the usual collisional relaxation process?” and “Just what, precisely, does

‘near equilibrium’ mean?”. One point relevant to all these questions is that

it is easy to define states which have finite free energy, but which are stable

to collective modes. One example is the current driven ion acoustic (CDIA)

system shown in Fig.2.9. Here the non-zero current, which shifts the elec-

tron Maxwellian, constitutes free energy. However, since the shift does not

produce a slope in 〈fe〉 sufficient to overcome ion Landau damping, the free

energy is not accessible to linear CDIA instabilities. Nevertheless, electron

→ ion momentum transfer is possible, and can result in electron relaxation,

since the initial state is not one of maximum entropy. Here, relaxation oc-

curs via binary interactions of dressed test particles. Note however, that in

this case relaxation rates may be significantly faster than for ’bare’ particle

collisions, on account of fluctuation enhancement by weakly damped collec-

tive modes. Thus, the B-L theory offers both something old and something

new relative to its collisional antecedent, the Landau theory.

In order to best elucidate the physics of relaxation processes, we keep
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fi

ion acoustic

wave resonance

fe

plasma wave

resonance

v

Fig. 2.9. Structure of 〈fi〉 , 〈fe〉 for stable plasma. Velocity space configuration,

showing electron plasma wave resonance on the tail of fe and ion acoustic wave

resonance in the bulk of fe, fi. In the case with Te À Ti, waves can resonate with

the bulk of the electron distribution while avoiding ion Landau damping. The slope

of fe is small at resonance, so ion acoustic waves are only weakly damped. In the

case with Te ∼ Ti, ion acoustic waves resonant in the bulk of fe cannot avoid ion

Landau damping, so the collective modes are heavily damped.

the calculations as simple as possible and divide our discussion into three

parts. The basic theory is developed for an electrostatic plasma in one

dimension, and then applied to single species and two species relaxation

processes. Single species relaxation in 3D is then considered followed by a

discussion of collective enhancement of momentum exchange.

2.2.3.1 Kinetic equation for mean distribution function

The Balescu-Lenard equation may be derived by a mean-field calculation of

the fluctuation-induced acceleration (q/m) 〈Eδf〉. Specifically,

∂ 〈f〉
∂t

= − ∂

∂v

q

m
〈Eδf〉

= − ∂

∂v
J(v) (2.27)
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where J(v) must be calculated using the total δf , which includes both the

linear response f c and the discreteness fluctuation f̃ . Thus, substitution of

δf = f c + f̃ ,

yields

J(v) = −
(

q

m
〈Ef c〉 +

q

m

〈
Ef̃

〉)
= −D(v)

∂ 〈f〉
∂v

+ Fr(v) (2.28)

where D(v) is the fluctuation-induced diffusion, while Fr(v) is the dynamical

friction term. Consistent with linear response theory, we can then write:

f c
k,ω = −i

(q/m)Ek,ω

ω − kv

∂ 〈f〉
∂v

. (2.29a)

so for stationary fluctuations, a short calculation gives:

D(v) =
∑
k,ω

q2

m2
k2

〈
φ2

〉
k,ω

πδ(ω − kv). (2.29b)

The spectrum
〈
φ2

〉
k,ω

is understood to be the test particle model spectrum,

i.e. that of Eq. (2.17b). Similarly, the dynamical friction term Fr(v) is

given by

Fr(v) = − q

m

∑
k,ω

ik
〈
φf̃

〉
k,ω

, (2.30a)

where, via Eq. (2.6b), we have:

〈
φf̃

〉
k,ω

=
4πn0q

k2

∫
dv

〈
f̃ f̃

〉
k,ω

ε(k, ω)∗
. (2.30b)

This result explains that the discreteness of particles are the source of cor-

relations in the excited mode. Since

〈
φ2

〉
k,ω

=
(

4πn0q

k2

)2 C(k, ω)
|ε(k, ω)|2

,
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and ( from Eq. (2.14) )

C(k, ω) =
〈
ñ2

〉
k,ω

=
∫

dv 2πδ(ω − kv) 〈f(v)〉 ,

we have 〈
φf̃

〉
k,ω

=
(

4πn0q

k2

)
2πδ(ω − kv) 〈f〉

n0|ε(k, ω)|2
.

Thus, the current J(v) is given by;

J(v) = −D(v)
∂ 〈f〉
∂v

+ Fr(v)

= −
∑
k,ω

(
4πn0q

k2

)
q

m

(
2πδ(ω − kv)
n0|ε(k, ω)|2

)
k

×
{(

4πn0q

k2

)
πk

|k|vT

(
q

m

)
F (ω/k)

∂ 〈f〉
∂v

+ Im ε(k, ω) 〈f〉
}

.

(2.31)

Note that the contributions from the diffusion D(v) and dynamical friction

Fr(v) have been grouped together within the brackets. Poisson’s equation

relates ε(k, ω) to the electron and ion susceptibilities χ(k, ω) by

ε(k, ω) =
(

1 +
4πn0q

k2

)[
χi(k, ω) − χe(k, ω)

]
,

where χi, χe are the ion and electron susceptibilities defined by

nk,ω = χi(k, ω)φk,ω.

It is straightforward to show that

Im ε(k, ω) = −
πω2

p

k2

k

|k|vT
F ′(ω/kvT ) + Im εi(k, ω), (2.32a)

where

Im εi(k, ω) =
4πn0q

k2
Imχi(k, ω). (2.32b)
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Here εi(k, ω) is the ion contribution to the dielectric function. Thus, we

finally obtain a simplified expression for J(v), which is

J(v) = −
∑
k,ω

(
ω2

p

k2

)2( 2π2

n0kvT

)
δ(ω − kv)
|ε(k, ω)|2

×
{

F
(ω

k

) ∂ 〈f〉
∂v

− 〈f(v)〉F ′
(ω

k

)
+ Im εi(k, ω) 〈f〉

}
. (2.33)

Equation (2.33) gives the general form of the velocity space electron cur-

rent in the B-L equation for electron relaxation, as described within the

framework of the TPM.

In order to elucidate the physics content of J(v), it is instructive to re-

write Eq. (2.33) in alternate forms. One way is to define the fluctuation

phase velocity by u = ω/k, so that

J(v) = −
∑
k,ω

(
ω2

p

k2

)2( 2π2

n0kvT

)
δ(u − v)

|k||ε(k, ω)|2

×
{

F (u) 〈f(v)〉′ − F ′(u) 〈f(v)〉 + Im εi(k, ω) 〈f(v)〉
}

. (2.34)

Alternatively, one could just perform the summation over frequency to ob-

tain

J(v) = −
∑

k

(
ω2

p

k2

)2( π

n0kvT

)
1

|ε(k, kv)|2

×
{

F (v)
∂ 〈f(v)〉

∂v
− 〈f(v)〉F ′(v) + Im εi(k, kv) 〈f(v)〉

}
. (2.35)

Finally, it is also useful to remind the reader of the counterpart of Eq.(2.33)

in the unscreened Landau collision theory, which we write for 3D as:

Jα(p) = −
∑
e,i

∫
qα

d3q

∫
d3p′ W (p, p′, q)qαqβ

{
f(p′)

∂f(p)
∂pβ

− ∂f(p′)
∂p′

β

f(p)
}

.

(2.36)

In Eq.(2.36), W (p, p′, q) is the transition probability for a collision (with

momentum transfer q) between a ‘test particle’ of momentum p and a ‘field
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particle’ of momentum p′. Here the condition |q| ¿ |p|, |p|′ applies, since

long range Coulomb collisions are ‘glancing’.

2.2.3.2 Offset on Landau-Rosenbluth Theory

Several features of J(v) are readily apparent. First, just as in the case of the

Landau theory, the current J(v) can be written as a sum of electron-electron

and electron-ion scattering terms, i.e.

J(v) = −
[
De,e(v)

∂ 〈f〉
∂v

+ Fe,e(v) + Fe,i(v)
]
. (2.37)

Here De,e(v) refers to the diffusion (in velocity) of electrons by fluctuations

excited by electron discreteness emission, Fe,e(v) is the dynamical friction

on electrons due to fluctuations generated by discreteness, while Fe,i is the

electron-ion friction produced by the coupling of emission (again due to

electron discreteness) to dissipative ion absorption. Interestingly, in 1D,

−De,e(v)
∂ 〈f〉
∂v

+ Fe,e(v) ∼ δ(u − v){−F (u) 〈f〉′ + F ′ 〈f〉} = 0,

since F = 〈f〉 for single species interaction. Thus, we see that electron -

electron friction exactly cancels electron diffusion in 1D. In this case,

J(v) ∼ δ(u − v)Im εi(k, ω) 〈fe(v)〉

so that electron relaxation is determined solely by electron-ion friction. This

result is easily understood from consideration of the analogy between same-

species interaction in a stable, 1D plasma and like-particle collisions in 1D

(Fig.2.10). On account of conservation of energy and momentum, it is trivial

to show that such collisions leave final state = initial state, so no entropy

production is possible and no relaxation can occur. This fact is manifested in

the B-L theory by the cancellation between electron - electron terms - since

the only way to produce finite momentum transfer in 1D is via inter-species
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initial

final

(a) (b)

Fig. 2.10. Like-Particle collisions in 1D and 3D.

collisions, the only term which survives in J(v) is Fe,i(v). Note that this

result is not a purely academic consideration, since a strong magnetic field

B0 often imposes a 1D structure on the wave -particle resonance interaction

in more complicated problems.

A detail comparison and contrast between the Landau theory of collisions

and the B-L theory of near-equilibrium relaxation is presented in Table 2.2.

2.2.3.3 Resistivity (Relaxation in one-dimensional system)

Having derived the expression for J(v), it can then be used to calculate

transport coefficients and to macroscopically characterize relaxation. As an

example, we consider the effective resistivity associated with the current

driven system of Fig.2.9. To constract an effective Ohm’s Law for this

system, we simply write

∂ 〈f〉
∂t

+
q

m
E0

∂ 〈f〉
∂v

= −∂J(v)
∂v

, (2.38a)
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Table 2.2. Comparison of Landau and Balescu-Lenard relaxation theory

Laudau Theory B-L Theory

physical

scenario

‘test’ particle

scattered by distribution

of ‘field’ particles

test particle scattered by

distribution of fluctuations

with vph = ω/k,

produced via discreteness

scatterer

distribution

f(p′)

field particles distribution

F (u), u = ω/k

fluctuation phase velocity

distribution

correlation

uncorrelated particles as discrete uncorrelated

assumed molecular chaos, test particles,

〈f(1, 2)〉 = 〈f(1)〉 〈f(2)〉
〈
f̃ f̃

〉
= (〈f〉 /n)δ(x )δ(v )

screening

none -

1/|ε(k, ω)|2Coulomb lnΛ factor

put in ‘by hand’

scattering

strength

|q| ¿ |p| Linear response and

weak deflection unperturbed orbits

Interaction

Selection Rule

W (p, p′, q) = δ(p − p′) δ(u − v) in 1D

in 1D, 1 species δ(k · (v − v′)) in 3D

and then multiply by n0qv and integrate to obtain, in the stationary limit,

E0 = −4πn0q

ω2
p

∫
dv J(v)

= 4πn0|q|
∑
k,ω

ω2
p

(k2)2
(2π/|k|)
n0kvT

(
Im εi(k, ω)
|ε(k, ω)|2

) 〈
fe

(ω

k

)〉
≡ ηeffJ0. (2.38b)

Not surprisingly, the response of 〈fe〉 to E0 cannot unambiguously be written

as a simple, constant effective resistivity, since the resonance factor δ(ω −

kv) and the k, ω dependence of the TPM fluctuation spectrum conflate the

field particle distribution function with the spectral structure. However, the
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necessary dependence of the effective resistivity on electron-ion interaction

is readily apparent from the factor of Im εi(k, ω). In practice, a non-trivial

effect here requires a finite but not excessively strong overlap of electron and

ion distributions. Note also that collective enhancement of relaxation below

the linear instability threshold is possible, should Im ε(k, ω) become small.

2.2.3.4 Relaxation in three-dimensional system

Having discussed the 1D case at some length, we now turn to relaxation

in 3D. The principal effect of three dimensionality is to relax the tight link

between particle velocity v and fluctuation phase velocity (ω/|k|)k̂. Alter-

natively put, conservation constraints on like-particle collisions in 1D force

the final state = initial state, but in 3D, glancing collisions which conserve

energy and the magnitude of momentum |p|, but change the particle’s di-

rections, are possible. The contrast between 1D and 3D is illustrated in

Fig.2.10. In 3D, the discreteness correlation function is

C(k, ω) = 〈ññ〉k,ω =
∫

d3 v
2π

n0
δ(ω − k · v) 〈f〉 . (2.39)

So the B-L current J(v) for like particle interactions becomes:

J(v) = −
∑
k,ω

(
ω2

p

k2

)2 2π2δ(ω − k · v)
vT n0|ε(k, ω)|2

× k

{ ∫
dv′ δ(ω − k · v′)

〈
f(v′)

〉
k · ∂ 〈f〉

∂v

−
∫

dv′ δ(ω − k · v′)k · ∂ 〈f〉
∂v′ 〈f(v)〉

}
. (2.40a)

Note that the product of delta functions can be re-written as

δ(ω − k · v)δ(ω − k · v′) = δ(ω − k · v)δ(k · v − k · v′).
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We thus obtain an alternate form for J(v), which is

J(v) = −
∑
k,ω

(
ω2

p

k2

)2 2π2δ(ω − k · v)
vT n0|ε(k, ω)|2

×
{

k

∫
dv′ δ(k · v − k · v′)

[ 〈
f(v′)

〉
k · ∂ 〈f〉

∂v
− k · ∂ 〈f〉

∂v′ 〈f(v)〉
]}

.

(2.40b)

This form illustrates an essential aspect of 3D, which is that only the parallel

(to k) components of test and field particle velocities v and v′ need be equal

for interaction to occur. This is in distinct contrast to the case of 1D, where

identity, i.e. v = v′ = u, is required for interaction. Thus, relaxation by

like-particle interaction is possible, and calculations of transport coefficients

are possible, following the usual procedures of the Landau theory.

2.2.3.5 Dynamic Screening

We now come to our final topic in B-L theory, which is dynamic screening. It

is instructive and enlightening to develop this topic from a direction slightly

different than that taken by our discussion up till now. In particular, we

will proceed from the Landau theory, but will calculate momentum transfer

including screening effects and thereby arrive at a B-L equation.

2.2.3.6 Relaxation in Landau model

Starting from Eq. (2.36), the Landau theory expression for the collision-

induced current (in velocity) may be written as

Jα(p) =
∑

species

∫
d3p′

[
f(p)

∂f(p′)
∂p′

β

− f(p′)
∂f(p)
∂pβ

]
Bα,β , (2.41a)

where

Bα,β =
1
2

∫
dσ qαqβ |v − v′|. (2.41b)
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The notation here is standard: dσ is the differential cross section and q

is the momentum transfer in the collision. We will calculate Bα,β directly,

using the some physics assumptions as in the TPM. A background or ‘field’

particle with velocity v′, and charge e′ produces a potential field

φk,ω =
4πe′

k2ε(k, ω)
2πδ(ω − k · v′), (2.42a)

so converting the time transform gives

φk(t) =
4πe′

k2ε(k, k · v′)
e−ik·v′t. (2.42b)

From this, it is straightforward to calculate the net deflection or momentum

transfer q by calculating the impulse delivered to a test particle with charge

e moving along an unperturbed trajectory of velocity v. This impulse is:

q = −
∫

r=ρ+vt

∂V

∂r
dt, (2.43a)

where the potential energy V is just

V = eφ

= 4πee′
∫

d3k
eik·re−ik·v′t

k2ε(k,k · v′)
. (2.43b)

Here ρ is the impact parameter for the collision, a cartoon of which is

sketched in Fig. 2.11. A short calculation then gives the net momentum

transfer q,

q = 4πee′
∫

d3k

(2π3)
−ikeik·ρ 2πδ(k · (v − v′))

k2ε(k, k · v′)

= 4πee′
∫

d2k⊥
(2π3)

−ik⊥eik⊥·ρ

k2ε(k, k · v′)|v − v′|
. (2.44)

To obtain Eq. (2.44), we used

δ(k · (v − v′)) =
δ(k‖)

|v − v′|
,
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!
v

Unperturbed

orbit

Fig. 2.11.

and the directions ‖ and ⊥ are defined relative to the direction of v − v′

Since J ∼ ρ2, we may write Bα,β as

Bα,β =
∫

d2ρ qαqβ |v − v′|. (2.45)

Noting that the d2ρ integration just produces a factor of (2π)2δ(k⊥ + k′
⊥),

we can then immediately perform one of the
∫

d2k⊥ integrals in Bα,β to get

Bα,β = 2e2e′2
∫

d2k⊥
k⊥αk⊥β

|k2
⊥ε(k,k · v′)|2|v − v′|

. (2.46)

It is easy to see that Eq.(2.46) for Bα,β (along with Eq.(2.41a)) is entirely

equivalent to the B-L theory for J(v). In particular, note the presence of

the dynamic screening factor ε(k, k ·v′). If screening is neglected, ε → 1 and

Bα,β ∼
∫

d2k⊥
k2
⊥

|ε|k4
⊥

∼
∫

dk⊥/k⊥

∼ ln(k⊥max/k⊥min)



2.2 Dressed Test Particle Model 37

which is the familiar Coulomb logarithm from the Landau theory. Note that

if k, ω → 0,

k2
⊥ε ∼ k2

⊥ + 1/λ2
D

so that Debye screening eliminates the long range, divergence (associated

with k⊥min) without the need for an ad-hoc factor. To make the final step

toward recovering the explicit B-L result, one can ‘un-do’ the dk‖ integration

and the frequency integration to find

Bα,β = 2(ee′)2
∫ ∞

−∞
dω

∫
k<kmax

d3k δ(ω−k·v)δ(ω−k·v′)
kαkβ

k4|ε(k, ω)|2
. (2.47)

Here kmax is set by the distance of closest approach, i.e.

kmax ∼
µv2

rel

2ee′
.

Substituting Eq.(2.47) for Bα,β into Eq.(2.41a) recovers Eq.(2.40a). This

short digression convincingly demonstrates the equivalence of the B-L theory

to the Landau theory with dynamic screening.

2.2.3.7 Collective mode

We now explore the enhancement of relaxation by weakly damped collective

modes. Consider a stable, two species plasma with electron and ion distri-

bution functions as shown in Fig. 2.9. This plasma has no free energy (i.e.

no net current), but is not necessarily a maximum entropy state, if Te 6= Ti.

Moreover, the plasma supports two types of collective modes, namely

i.) electron plasma waves, with vTe < ω/k.

ii.) ion acoustic waves, with vTi < ω/k < vTe,

where vTe and vTi are the electron and ion thermal speeds, respectively.

Electron plasma waves are resonant on the tail of 〈fe〉, where there are

few particles. Hence plasma waves are unlikely to influence relaxation in
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a significant way. On the other hand, ion acoustic waves are resonant in

the bulk of the elctron distribution. Moreover, if Te À Ti, it is easy to

identify a band of electron velocities with significant population levels f but

for which ion Landau damping is negligible. Waves resonant there will be

weakly damped, and so may substantially enhance relaxation of 〈fe(v)〉. It is

this phenomenon of collectively enhanced relaxation that we seek to explore

quantitatively.

To explore collective enhancement of relaxation, we process from Eq.(2.47),

make a pole expansion around the ion acoustic wave resonance and note for

ion acoustic wave, ω < k · v (for electrons), so

Bα,β = 2πq4

∫ ∞

−∞
dω

∫
d3k δ(k · v)δ(k · v′)

δεr(k, ωk)
|Im ε(k, ω)|

. (2.48)

Here εr(k, ωk) = 0 for wave resonance, and e = e′ = q, as scattered and field

particles are all electrons. Im ε(k, ω) refers to the collective mode dissipation

rate. Now, changing variables according to

R = k · n̂,

k1 = k · v, k2 = k · v′

n̂ = v × v′/|v × v′|.

We have

d3k = dRdk1dk2/|v × v′|

so the k1, k2 integrals in Eq.(2.48) may be immediately performed, leaving

Bα,β =
2πq4nαnβ

|v × v′|
2

∫
R>0

dk

∫ ∞

−∞
dω

δ(εr(k, ω))
R2|Im ε|

. (2.49)

We remind the reader that this is the piece of Bα,β associated with field

particle speeds or fluctuation phase speeds v′ ∼ ω/k ¿ vTe for which the

collective enhancement is negligible and total J(v) is, of course, the sum of
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both these contributions. Now, the dielectric function for ion acoustic waves

is

Re ε(k, ω) = 1 −
ω2

pi

ω2
+

1
k2λ2

D

. (2.50a)

Im ε(k, ω) =
√

π

2
ω

k3

(
1

λ2
DevTe

+
1

λ2
DivTi

e−ω2/2k2v2
Ti

)
. (2.50b)

Here λDe and λDi are the electron and ion Debye lengths, respectively. An-

ticipating the result that

ω2 =
k2c2

s

1 + k2λ2
De

for ion acoustic waves, Eq.(2.50a, 2.50b) togother suggest that the strongest

collective enhancement will come from short wavelength (i.e. k2λ2
De ' 1),

because Im ε(k, ω) is smaller for these scales, since

Im ε(k, ω) ∼ 1
k2λ2

De

ω

kvTe
.

For such short wavelengths, then

δ(εr) ∼= δ(1 − ω2
pi/ω2)

=
1
2
ωpi

[
δ(ω − ωpi) + δ(ω + ωpi)

]
.

Evaluating Bα,β , as given by Eqs. (2.49) and (2.50), in this limit then finally

gives,

Bα,β =
(

4πq2ωpinαnβ

|v × v′|

) ∫
dk

k2|Im ε(k, ωpi)|

=
2
√

2πq4vTeλ
2
De

|v × v′|λ2
Di

nαnβ

∫
dξ

/[
1 + exp

(
− 1

2ξ
+

L

2

)]
, (2.51a)

where:

L = ln
[(

Te

Ti

)2 mi

me

]
(2.51b)

and ξ = k2λ2
De. Equation (2.51a) quite clearly illustrates that maximal

relaxation occurs for minimal Im ε(ξ, L), that is when exp[−1/2ξ + L/2] ¿
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1. That is, the collective enhancement of discreteness-induced scattering is

determined by Im ε for the least damped mode. This occurs when ξ / 1/L,

so that the dominant contribution to Bα,β comes from scales for which

k2 = (k · n̂)2 < 1/(λ2
DeL).

Note that depending on the values of L and the Coulomb logarithm (ln Λ,

which appears in the standard Coulombic scattering contribution to Bα,β

from v′ ∼ vTe), the collectively enhanced Bα,β due to low velocity field

particles (v′ ¿ vTe) may even exceed its familiar Coulomb scattering coun-

terpart. Clearly, this is possible only when Te/Ti À 1, yet not so large as to

violate the tenets of the TPM and B-L theories.

2.2.4 Test Particle Model: Looking Back and Looking Ahead

In this section of the introductory chapter, we have presented the test par-

ticle model for fluctuations and transport near thermal equilibrium. As

we mentioned at the beginning of the chapter, the TPM is the most basic

and most successful fluctuation theory for weakly collisional plasmas. So,

despite its limitation to stable, quiescent plasmas, the TPM has served as

a basic paradigm for treatments of the far more difficult problems of non-

equilibrium plasma kinetics, such as plasma turbulence, turbulent transport,

self-organization etc. Given this state of affairs, we deem it instructive to

review the essential elements of the TPM and place the subsequent chap-

ters of this book in the context of the TPM and its elements. In this way,

we hope to provide the reader with a framework from which to approach

the complex and sometimes bewildering subject of the physical kinetics of

non-equilibrium plasmas. The discussion which follows is summarized in

Table 2.3. We discuss and compare the test particle model to its non-
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equilibrium descendents in terms of both physics concepts and theoretical

constructs.

Regarding physics concepts, the TPM is fundamentally a “near equilib-

rium” theory, which presumes a balance of emission and absorption at each

k. In a turbulent plasma, non-linear interaction produces spectral transfer

and a spectral cascade, which de-localize the location of absorption from the

region of emission in k, ω space. A spectral transfer turbulence energy from

one region (i.e. emission) to another (i.e. damping). There two cases are

contrasted in Fig.2.1.

A second key concept in the TPM is that emission occurs only via Cerenkov

radiation from discrete test particles. Thus, since the only source for collec-

tive modes is discreteness, we always have

∇ · εE = 4πqδ(x − x(t))

so 〈
φ2

〉
k,ω

=

〈
ñ2

〉
|ε(k, ω)|2

.

In contrast, for non-equilibrium plasmas, nonlinear coupling produces inco-

herent emission so the energy in mode k evolves according to

∂

∂t

〈
E2

〉
k

+

(∑
k′

C(k, k′)
〈
E2

〉
k′ Tck,k′

) 〈
E2

〉
k

+ γdk

〈
E2

〉
k

=
∑
p,q

p+q=k

C(p, q)Tcp,q

〈
E2

〉
p

〈
E2

〉
q

+ SDk

〈
E2

〉
k

(2.52)

where SDk is the discreteness source and γdk is the linear damping for the

mode k. For sufficient fluctuation levels, the nonlinear noise term (i.e. the

first on the RHS) will clearly dominate over discreteness. A similar comment

can be made in the context of the LHS of Eq.(2.52), written above. Nonlinear
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Table 2.3. Test particle model and its non-equilibrium descendents:

physical concepts and theoretical constructs

Test Particle Model Non-Equilibrium Descendent

Physics Concepts

emission vs. absorption

balance per k

spectral cascade, transfer,

inertial range (Chapter 5, 6)

discreteness noise
incoherent mode-coupling (Chapter 5, 6),

granulation emission (Chapter 8)

relaxation by

screened collisions

collective instability driven relaxation,

quasilinear theory, granulation interaction

(Chapter 3, 8)

Theoretical Constructs

linear response

unperturbed orbit

turbulence response, turbulent diffusion,

resonance broadening (Chapter 4,6)

damped mode response

nonlinear dielectric,

wave-wave interaction,

wave kinetics (Chapter 5, 6)

mean field theory
mean field theory without and with

granulations (Chapter 3, 8)

discreteness-driven

stationary spectrum

wave kinetics,

renormalized mode coupling,

disparate scale interaction (Chapter 5 - 7)

Balescu-Lenard,

screened Landau Equations

quasilinear theory

granulation relaxation theory

(Chapter 3, 8)

damping will similarly eclipse linear response damping for sufficiently large

fluctuation levels.

A third physics concept is concerned with the mechanism physics of relax-

ation and transport. In the TPM, these occur only via screened collisions.
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Collective effects associated with weakly damped modes may enhance relax-

ation but do not fundamentally change this picture. In a non-equilibrium

plasma, collective modes can drive relaxation of the unstable 〈f〉, and non-

linear transfer can couple the relaxation process to thus enhance its rate.

In the realm of theoretical constructs and methods, both the test particle

model and its non-equilibrium counterparts are fundamentally mean-field

type approaches. However, they differ dramatically with respect to particle

and model responses, nature of the wave spectrum and in how relaxation

is calculated. The TPM assumes linear response theory is valid, so particle

response functions exhibit only ‘bare’ Landau resonances. In contrast, scat-

tering by strong electric field fluctuations will broaden the Landau resonance

and renormalize the Landau propagator, so that,

Rk,ω ∼ eikx

∫ ∞

0
eiωτe−ikx(−τ)dτ

∼
∫ ∞

0
ei(ω−kv)τdτ = i/(ω − kv) (2.53a)

becomes

Rk,ω ∼
∫ ∞

0
eiωτ e−ikx0(−τ)

〈
e−ikδx(−τ)

〉
dτ

∼
∫ ∞

0
ei(ω−kv)τ− k2D

3
τ3

dτ ∼ i/(ω − kv + i/τc), (2.53b)

where 1/Tc = (k2D/3)1/3. This is equivalent to the renormalization[
− i(ω − kv)

]−1 →
[
− i(ω − kv) − ∂

∂v
D

∂

∂v

]−1

. (2.53c)

Here D = D[
〈
E2

〉
] is a functional of the turbulence spectrum. In a similar

way to that sketched in Eq. (2.53), collective responses are renormalized and

broadened by nonlinear wave interaction. Moreover, in the non-equilibrium

case, a separate wave kinetic equation for N(k,x, t), the wave population

density, is required to evolve the wave population in the presence of sources,
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non-linear interaction and refraction, etc. by disparate scales. This wave

kinetic equation is usually written in the form

∂N

∂t
+ (vg + v) · ∇N − ∂

∂x
(ω + k · v) · ∂N

∂k
= SkN + CK(N). (2.54)

Since in practical problems, the mean field or coarse grained wave popu-

lation density 〈N〉 is of primary interest, a similar arsenal of quasi-linear

type closure techniques has been developed for the purpose of extracting

〈N〉 from the wave kinetic equation. We conclude by noting that this dis-

cussion, which began with the TPM, comes full circle when one considers

the effect of nonlinear mode coupling on processes of relaxation and trans-

port. In particular, mode localized coupling produces phase space density

vortexes or eddys in the phase space fluid. These phase space eddys are

called granulations, and resemble a macroparticle. Such granulations are

associated with peaks in the phase space density correlation function. Since

these granulations resemble macroparticles, it should not be too surprising

that they drive relaxation via a mechanism similar to that of dressed test

particles. Hence, the mean field equation for 〈f〉 in the presence of granu-

lations has the structure of a Balescu-Lenard equation, though of course its

components differ from those discussed in this chapter.

2.3 K41 Beyond Dimensional Analysis - Revisiting the Theory of

Hydrodynamic Turbulence

We now turn to our second paradigm, namely Navier-Stokes turbulence,

and the famous Kolmogorov cascade through the inertial range. This is

the classic example of a system with dynamics controlled by a self-similar

spectral flux. It constitutes the ideal complement to the TPM, in that it

features the role of transfer, rather than emission and absorption. We also




