Physics 214 UCSD/225a UCSB

Lecture 10

» Halzen & Martin Chapter 4
— Electron-muon scattering
— Cross section definition
— Decay rate definition
— treatment of identical particles => symmetrizing
— crossing



Electrodynamics of Spinless
particles

* We replace p* with p* + eA*in classical EM for

a particle of charge -e moving in an EM
potential A*

* In QM, this translates into: 0" —id" +eA”

 And thus to the modified Klein Gordon
Equation:

(B“BH + m2)¢ — —V¢
V=—ie(d"A, + A"d,)—e’A’

V here is the potential energy of the perturbation.



Two-by-two process
Overview

Start with general discussion of how to relate
number of scatters in AB -> CD scattering to
“beam & target independent” cross section In
terms of W, .

Calculate W;. for electron-muon scattering.
Calculate cross section from that

Show relationship between cross section and
“Invariant amplitude” (or "“Matrix Element”).



j*=(p.j) Reminder from last lecture
2j, =0

Plane wave solutions are:

R N R .
p_{(/’ a ? atJ (/5(t,x)=Ne"””’“
J==i(¢"Vo—-¢Ve')

4-vector current for the plane wave solutions we find:
2 )

p=2EINI

~ — )
j=2plIN I

The 2|N|? is an arbitrary normalization

JH=2p" IN T



Cross Section for AB -> CD

o target
» Basic ideas:
scatter
beam > »
\
# of scatters = (flux of beam) x (# of particles in target) x o
VVfi
Cross section = ¢ = = (number of final states)
(initial flux)

W; = rate per unit time and volume

“Cross section” is independent of
characteristics of beam and target !!!



Aside on wave function
Normalization

Wfi

Cross section = ¢ = = (number of final states)
(initial flux)

W, o< N4
Number of final states/initial flux «< N-4
Cross section is thus independent of
choice of wave function normalization
(as it should, of course!)

We will see this explicitly as we walk through this now.



Two-Two process AB -> CD

Normalize plane wave in constant volume

— This is obviously not covariant, so the volume
normalization better cancel out before we're done!

J-,oalV:ZE:>N:L

) W

# of particles per volume = 2E/V =n

# of particles A crossing area per time = v, n,
FIUX(AB) = v, Ny (2ER/V) = v, (2EAV) (2ER/V)



Aside on covariant flux

Flux = v, (2EA/V) (2E4/V)

Now let target (i.e. B) move collinear with beam (i.e.

A): Flux = (v, = vg) (2EA/V) (2ER/V)
Now take v=p/E: Flux = (Eg pa + EA pg) 4/V?

Now a little relativistic alg

ebra:

(pifpu) mAmB (E L, - pApB)2 mf\mlzs

(EAEB) :(p +m )A(p +m)

Pas="Pp

B

Putting the pieces together and adding some algebra:

2
(pﬁfpu) —mymy = (PaEs+ PsEy,)

4
Flux =— \/pApu —mAmB

2

Obviously covariant!

(up to 1/V2 normalization factor
that is arbitrary, and will cancel)



Number of final states/particle

« QM restricts the number of final states that a
single particle in a box of volume V can have:

3
Number of final states Vdp

2E particles - (271-)3 VF

This follows from Exercise 4.1 in H&M
that you will do as homework exercise.



Putting the pieces together

Wfi

Cross section = ¢ = = (number of final states)
(initial flux)

Wi Vdpg Vdpg

G:

va (QEV) (2Eg/V) (2m)2E. (2m)’2E,

Next we calculate W,



Electron Muon Scattering

« Use what we did last lecture
— Electron scattering in EM field

» With the field being the one generated by the
muon as source.

— Use covariant form of maxwell’s equation in
Lorentz Gauge to get V, the perturbation potential.

* Plugitinto T;



In form of diagrams

e e-

field of muon

e

Electron-muon scattering




Electron Muon scattering

2 At = Jt 5 Maxwell Equation

Note: [ | eiox= -qg2 eiax

Jl =—eNyN,(p, + py)"e're=re)
1 S

At =——J4 -9
q

1

Note the symmetry: (1) <-> (2

(2)

Tfi =—IN,NyN-N/, (271')45(4)(131) + Pe— Py —Ps)M

. [ u _ig‘uv . 1%
—lM—(le(PA‘l‘Pc) ) q2 (le(pD_l_pB) )

Note the structure: Vertex x propagator x Vertex



Reminder




Reminder: T; -> W;

2 2

T T

W, =lim- = -
e f tV

Last time we didn’t work in a covariant fashion. This time
around, we want to do our integrations across both time and
space, i.e. W is a rate per unit time and volume.

Tfi =—IN,NyN-N, (271')45(4)(171) +Ppe—Ps—Ps)M

As last time, we argue that one é-function remains after ||2
while the other gives us a tV to cancel the tV in the denominator.



Putting it all together for W;

_ L [
YW Wit

SY(p,+p.—p, — )
Wﬁ.=(27l')4 (Pp li;:4 P pB)‘M‘




Putting it all together for ¢

Wi Vdpg Vdpg
va (QEAV) (2Eg/V) (2M)2E. (2m)°2E,

G:

eV 2 8Y(pp+ Pe— Py — Py) Ml V- dp.dp,

 4v,EE, v* (2r)°4E E,

1 4) 4+ _ . 343
do = : ) (Pp+ De— Py pB)‘M‘Z dp.dp,
641 v, EE, E E,




Aside on outgoing states

* While the incoming states have definite
momentum, the outgoing states can have
many momenta.

 The cross section is thus a differential cross
section in the outgoing momenta.

e

|M|2 1 dp’dp’
= 6(4) + _ _ c D
4v,E,E, 167° (Po+ Pc =Py~ Pa) EE,

o (incoming flux is still not covariant)



It Is customery to re-express

|M|2 1 dp’dp’
d = 5(4) + _ _ c D
© 4v,E,E, 167° (Po ¥ P = Pa= Ps) EE,
2
M
As: do=——d0Q
F

2
F = flux factor: F = 4\/(192‘]95) -m.m, =4v,E E,

dQ = Lorentz invariant phase space:

dp dpD
_|_ C
167r Pe=Pa=Ps) E E,

dQ =



In the center-of-mass frame:

F=4pA[(E,+E,)’ =4pAls

1 p

I dQ

dO =
CT a1

You get to show this as homework !



Electron-electron scattering

« With identical particles in the final state, we obviously
need to allow for two contributions to M.

— Optlon 1: (e- e-\
- C attaches at vertex with A Pa Pc
« D attaches at vertex with B /__ N\ _
. e e - p p e
— Option 2: Prn§ pp |\_€ "B FD J
« C attaches at vertex with B ]
- e PB pc®
* D attaches at vertex with A\~ )

* As we can'’t distinguish C and D,the amplitudes add
before M is squared.

A N\ )
o _e{@ + P (P + Po)| (Pt 2o Py + PO, ]
o 2 2
L (pD _pB) PR (pc _pB) )




Electron-positron and crossing
- - N

(Pa+ D) (=Ps— Pp),
((~pp)—(=py))

(e

e /
e J A
(Py—Ps) (=Pp + D)y
P Re (pc _ (_p[)))2
\e- 'pB 'pD e- J
M = +

_ez{f(pA + pe) (=pg — pD): ((pA —pp) (=pp + Pc ):
(~Pp) = (pPp)’ (Pe =(=pp))’

AN J




Electron-positron and crossing

Electron - electron
M= (Pyt+p) Pyt Pp), . (Pyt+Pp) (Pt Do),
- 2 2
(pD _pB) (pc _pB)

Electron - positron
M =2 Pat P) Py —IZD)M L (Pa=Pp)" Dy +2pc)u
((=Pp)—(=pp)) (Pe —(=pp))

Pp = -Ps

Only difference is: Ps — Pp



Electron-Electron
scattering

Ccrossing

Electron-Positron
scattering




E-mu vs e-e vs e-ebar scattering

Electron - muon

M = —o? (P + pc) (Pg "l'pz))u
(pD _pB)

Electron - electron
M = —o2 (P + ) (Py _l'pD)u N (P + Pp) (P ;l'pc)u
(pD_pB) (pc _pB)

Electron - positron
M — _ez[(m + pc) (=ps — Pp), . (Py—Pp) (=Pp+pc), ]

((=pp)—(=py))° (Pe—(=pp))’






