Chapter 7

Noether’s Theorem

7.1 Continuous Symmetry Implies Conserved Charges

Consider a particle moving in two dimensions under the influence of an external potential
U(r). The potential is a function only of the magnitude of the vector r. The Lagrangian is
then

L=T-U=3im(#+r*¢*) -U(r), (7.1)

where we have chosen generalized coordinates (r,¢). The momentum conjugate to ¢ is
p, = mr2¢. The generalized force F o clearly vanishes, since L does not depend on the
coordinate ¢. (One says that L is ‘cyclic’ in ¢.) Thus, although r = r(t) and ¢ = ¢(t)
will in general be time-dependent, the combination p 6 = mr2(ﬁ is constant. This is the
conserved angular momentum about the 2 axis.

If instead the particle moved in a potential U(y), independent of x, then writing
L=gm(i*+3%) = Uly) , (7.2)

we have that the momentum p, = OL/J& = mi is conserved, because the generalized force
F, = OL/0x = 0 vanishes. This situation pertains in a uniform gravitational field, with
U(z,y) = mgy, independent of x. The horizontal component of momentum is conserved.

In general, whenever the system exhibits a continuous symmetry, there is an associated
conserved charge. (The terminology ‘charge’ is from field theory.) Indeed, this is a rigorous
result, known as Noether’s Theorem. Consider a one-parameter family of transformations,

9 — 4,(¢:¢) , (7.3)

where ( is the continuous parameter. Suppose further (without loss of generality) that at
¢ = 0 this transformation is the identity, i.e. §,(¢,0) = gq,. The transformation may be
nonlinear in the generalized coordinates. Suppose further that the Lagrangian L s invariant
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under the replacement ¢ — ¢. Then we must have

d . IL 9q, IL 9q
0=— L(Q7Q7t):—— +—-—0
dg o 995 OC o d4s OC o
SR
dt \ 0¢, ) OC o 9o dt \ 9C ) .
d (0L 0d,
_ 4 (Y9 %o ) 7.4
dt <8QU aC >§:0 ( )
Thus, there is an associated conserved charge
0L 04,
N=—"" 27 ) (7.5)
94, OC =0
7.1.1 Examples of one-parameter families of transformations
Consider the Lagrangian
L=1im@*+9*) - U(Va2+y?) . (7.6)
In two-dimensional polar coordinates, we have
L=3m@+r%%) -U(r), (7.7)
and we may now define
T¢()=r (7.8)

¢(¢)

¢+C.

Note that 7#(0) = and ¢(0) = ¢, i.e. the transformation is the identity when ¢ = 0. We
now have

OL 8¢

IL 94 oL 9¢
¢ OC

oL oL or
' Dy €

A= i ¢

= mrlp . (7.10)
¢=0

(=0 (=0

Another way to derive the same result which is somewhat instructive is to work out the
transformation in Cartesian coordinates. We then have

Z(¢) =x cos( —y sin (7.11)
g(¢) =z sin( +y cos( . (7.12)

Thus, ) )
0 . T (713)

a¢
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and
oL 0% oL 0y _ _
a=SE% LM gy (7.14)
oz 0¢ o 0y 0¢ o
But .
m(xy —yi) =mz-r x 7 =mr’p . (7.15)

As another example, consider the potential

U(p,¢,2) =V(p,ap+ 2) , (7.16)

where (p, ¢, z) are cylindrical coordinates for a particle of mass m, and where a is a constant
with dimensions of length. The Lagrangian is

%m(;’)2 + p?% + j:2) —Vip,ap+ z) . (7.17)

This model possesses a helical symmetry, with a one-parameter family

pQ)=p (7.18)
$(() =9 +¢ (7.19)
Z2(Q)=2z—Ca . (7.20)
Note that B
ap+zZ=ad+z, (7.21)

so the potential energy, and the Lagrangian as well, is invariant under this one-parameter
family of transformations. The conserved charge for this symmetry is

oL ¢

OL 9p OL 99
0 I¢

oL oL 0
~9p OC

+ =
o 0z OC

= mpp — maz . (7.22)
¢=0

¢=0

We can check explicitly that A is conserved, using the equations of motion

doL d, . 0L OV
d 0L d . oL oV
E@‘E(mz)_a_gb__§ . (7.24)
Thus,
A= 4 (mp2<;.5) —a i(mz) = (7.25)
dt dt ' ’

7.2 Conservation of Linear and Angular Momentum

Suppose that the Lagrangian of a mechanical system is invariant under a uniform translation
of all particles in the n direction. Then our one-parameter family of transformations is given
by

T, =x,+(n, (7.26)
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and the associated conserved Noether charge is

A=n-P, (7.27)

where P = ) p, is the total momentum of the system.
If the Lagrangian of a mechanical system is invariant under rotations about an axis n, then
T, = R((, )z,
— @+ R X, + O(C) (7.28)

where we have expanded the rotation matrix R(¢,n) in powers of (. The conserved Noether
charge associated with this symmetry is

Azzgi'ﬁXwa:ﬁ-ZwGXpa:ﬁ.L, (7.29)

a

where L is the total angular momentum of the system.

7.3 Advanced Discussion : Invariance of L vs. Invariance of

S

Observant readers might object that demanding invariance of L is too strict. We should
instead be demanding invariance of the action S'. Suppose S is invariant under

t —1(q,t,0) (7.30)
45 (t) — 4,(q,t,¢) - (7.31)

Then invariance of S means

b,

tb
S = /dtL(q,q,t) = /dtL(g,g,t) . (7.32)
ty

123
Note that ¢ is a dummy variable of integration, so it doesn’t matter whether we call it ¢
or t. The endpoints of the integral, however, do change under the transformation. Now
consider an infinitesimal transformation, for which 6t =t —t and dqg = ¢(t) — g(t) are both
small. Invariance of S means

t, t,+3t,
_ oL . oL .
S—/dtL(q,q,t)— /dt{L(q,q,t)—1—8—%5(]0—1—8—%5(]0—1—...}, (7.33)

ta tatoty

'Indeed, we should be demanding that S only change by a function of the endpoint values.
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where

6q,(t) = 4,(t) — ¢,(t)
=4, () = 4, (f) + G5 (t) — 4, (1)
= 0q, — ¢, 0t + O(dq 575) (7.34)

Subtracting the top line from the bottom, we obtain

t,+0t,
oL oL -
0=1L,dt, — L,0t, +— 50_ 50[1 /dt < ) dq(t
b9l R 9o — q { Gy 24, q(t)
ta+ota
tb
d oL oL
dt L——4¢q,|ot+—=—9 : .
/ dt{( 4o ”) "% q“} (7)
tq
Thus, if ( = §( is infinitesimal, and
ot = A(q,t) 6¢C (7.36)
0q, = B,(q,t)C , (7.37)

then the conserved charge is

oL . oL
A (L -z %> Ala.0)+ 52 B, (0.0

= — H(q,p,t) A(q,t) + p, By(q,1) . (7.38)

Thus, when A = 0, we recover our earlier results, obtained by assuming invariance of L.
Note that conservation of H follows from time translation invariance: ¢t — t + (, for which
A =1 and B, = 0. Here we have written

H=p,q,—L, (7.39)

and expressed it in terms of the momenta p,, the coordinates ¢,, and time ¢t. H is called
the Hamiltonian.

7.3.1 The Hamiltonian

The Lagrangian is a function of generalized coordinates, velocities, and time. The canonical
momentum conjugate to the generalized coordinate ¢, is

oL

Pe = . (7.40)
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The Hamiltonian is a function of coordinates, momenta, and time. It is defined as the
Legendre transform of L:

H(q.p,t) =Y pyd,— L. (7.41)
Let’s examine the differential of H:
oL OL oL
dH = i d dq. — —dq. — —dq. | — —dt
b <q" Do TP M ™ Gy, Y7 94, ) ot
OL OL

= i dp, — —d — —dt 7.42
ZU: (qo s~ 5o qg> T (7.42)

where we have invoked the definition of p, to cancel the coefficients of dg,. Since p, =
0L/0q,, we have Hamilton’s equations of motion,

_0H .  0H

el Yy = ——— . 7.43
o=, + P 9, (7.43)
Thus, we can write
. . oL
dH = Z <q0 dp, — Dy dqa) o dt . (7.44)
Dividing by dt, we obtain
dH oL
i 4
dt ot ’ (7.45)

which says that the Hamiltonian is conserved (i.e. it does not change with time) whenever
there is no explicit time dependence to L.

Example #1 : For a simple d = 1 system with L = %miﬁ2 — U(x), we have p = ma and

2
H=pi—L=1mi?+U(x)= ;’—m +U(2) . (7.46)

Example #2 : Consider now the mass point — wedge system analyzed above, with

L= %(M+m)X2 +mXi + tm (1 + tan?a) @2 — mgx tana | (7.47)

The canonical momenta are

P=—"—"=(M+m)X +mi (7.48)
0X
p= g—i =mX 4+ m (1 +tan?a) i . (7.49)

The Hamiltonian is given by

H=PX +pi—1L
=M +m) X%+ mXi + tm (1 +tan’a) i + mgz tana . (7.50)
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However, this is not quite H, since H = H(X,z, P,p,t) must be expressed in terms of the
coordinates and the momenta and not the coordinates and velocities. So we must eliminate
X and # in favor of P and p. We do this by inverting the relations

<];> - <M;; "o ﬁan?a)) <)x(> (751)
to obtain

(i«’() " m (M + (M1+ m) tan2a) (m(l —_F;?n2a) M_4T—nm> (i) : (7.52)

Substituting into 7.50, we obtain

M+m  P? cos’a Pp cos’a p?
H = — + +mgz tan o . 7.53
2m M +msin’a M +msina 2(M +m sina) g (7.53)

Notice that P = 0 since g—)L< = 0. P is the total horizontal momentum of the system (wedge
plus particle) and it is conserved.

732 IsH=T+U?

The most general form of the kinetic energy is

T = T2 + Tl + TO
= 31201 4y dor + TV (0,1) 4y + TO(g,t) (7.54)

2

where T (q, ¢,t) is homogeneous of degree n in the velocities?. We assume a potential

energy of the form

U=U,+U,
= UM (q,t) 4, +U (g, 1), (7.55)

which allows for velocity-dependent forces, as we have with charged particles moving in an
electromagnetic field. The Lagrangian is then

L=T-U=3T2(¢.t)dy 4y + T (0, ) 4 + TO(q,) = UL (g, 8) 4, — U0 (g, 1) . (7.56)
We have assumed U (g, t) is velocity-independent, but the above form for L = T'— U is quite
general. (FE.g. any velocity-dependence in U can be absorbed into the B, ¢, term.) The

canonical momentum conjugate to ¢, is

oL .
Pr = B4, T2 G+ T (g,8) = UL (g, 1) (7.57)

2A homogeneous function of degree k satisfies f(Azy, ..., Ax,) = A*f(z1,...,x,). It is then easy to prove
Buler’s theorem, 31, ;2L = kf.
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which is inverted to give

—1
Gr =T (py =TS +UY) . (7.58)
The Hamiltonian is then
H - po’ qU - L
—1
=372 (pr =TV + UD) (0 — T +UD) =Ty + U (7.59)

If T,,, T}, and U, vanish, i.e. if T(q,q,t) is a homogeneous function of degree two in the
generalized velocities, and U(g, t) is velocity-independent, then H =T+ U. But if T}, or T}
is nonzero, or the potential is velocity-dependent, then H # T + U.

7.3.3 Example: A bead on a rotating hoop

Consider a bead of mass m constrained to move along a hoop of radius a. The hoop is
further constrained to rotate with angular velocity w about the 2-axis, as shown in Fig.
7.1.

The most convenient set of generalized coordinates is spherical polar (r, 8, ¢), in which case

T= %m(fZ + 72602 +r?sin0 ¢2)

= %ma2 (92 + w?sin? 9) . (7.61)

Thus, T, = %ma292 and T, = %ma2w2 sin? §. The potential energy is U(#) = mga(1—-cos 6).
The momentum conjugate to ¢ is p, = ma?6, and thus

H(Q,p):T2—T0+U

= %ma292 — imaw?sin® 6 + mga(1 — cos 0)
2
- 2p9 5 — yma’w’ sin® 6 + mga(1 — cos ) . (7.62)
ma

For this problem, we can define the effective potential

Ug(0) = U — Ty = mga(1 — cos 0) — dma’w?sin® 6
2
w? L,
= mga(l —cosf — m sin 9) , (7.63)

where w, = g/a®. The Lagrangian may then be written

L=1ma®0? —Uyg(0) , (7.64)
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Figure 7.1: A bead of mass m on a rotating hoop of radius a.

and thus the equations of motion are

2
f = 7.65
ma 5 (7.65)
Equilibrium is achieved when Ul (6) = 0, which gives
aUeff . w?
50 —mgasmﬂ{l——zcosH}—O, (7.66)

wo

ie. 0* =0, 0* = m, or §* = +cos ! (wi/w?), where the last pair of equilibria are present
only for w? > w. The stability of these equilibria is assessed by examining the sign of
2%(0). We have

2

55(0) = mga { cos ) — Z—(Q] (2cos® 0 — 1)} . (7.67)
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Figure 7.2: The effective potential Ueg(6) = mga[1—cos 6 — 2‘:}—22 sin?#]. (The dimensionless
0

potential U () = Ueg/mga is shown, where z = 0/7.) Left panels: w = 2V3wo. Right

panels: w = v/3wy.

Thus,

7
eff

(%)

9

mga(l—i—;) at 0* =0
—mga (1 + z—g) at 0* = (7.68)
mga (Z_; — Z—é) at 0* = +cos™! (Z—é) .

Thus, 6* = 0 is stable for w? < w? but becomes unstable when the rotation frequency w
is sufficiently large, i.e. when w? > wg. In this regime, there are two new equilibria, at
0* = 4 cos™!(w?/w?), which are both stable. The equilibrium at §* =  is always unstable,
independent of the value of w. The situation is depicted in Fig. 7.2.
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7.4 Charged Particle in a Magnetic Field

Consider next the case of a charged particle moving in the presence of an electromagnetic
field. The particle’s potential energy is

Ulr) = qo(r,t) — % A(r,t) -7, (7.69)

which s velocity-dependent. The kinetic energy is T = %m 72, as usual. Here ¢(r) is the
scalar potential and A(r) the vector potential. The electric and magnetic fields are given

by

1 0A
E=-V¢p— - — B=VxA. .
The canonical momentum is
_OL i la (7.71)
b= or c '

and hence the Hamiltonian is

H('r,p,t):pr—L
:mi*2+gA-1'°—%m7‘2—gA-i°+q¢

C C
= %mi‘2+q¢
1 2
- %( —%A(r,t)) +qo(rt) . (7.72)

If A and ¢ are time-independent, then H(r,p) is conserved.

Let’s work out the equations of motion. We have

d (0L oL
a (8_'r> = o (7.73)
which gives
. qdA q .
e IV(A- .74
mit 4 ¢Vo+-V(A-7), (7.74)
or, in component notation,
. q E?AZ . q E?AZ B 8(]5 q OA] .
it ¢ Ox; Bt ear 1 Ox; ¢ Ox; Tio (7.75)

which is to say
.. q aAj 0A;\ .
maua, = — _ - X; .
¢ q Or; ¢ Ot c\0x; Oxj)7
It is convenient to express the cross product in terms of the completely antisymmetric tensor
of rank three, €

(7.76)

ijk"
0Ay

B, =¢€., ——
ijk o
Oz

(7.77)
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and using the result
Eijk €imn = 5jm 5kn - 6jn 5km ) (778)
we have €iik B, = 8]- A, — 0, Aj, and

0 0A; .
o q n % €ind; By (7.79)

mz, = —
! q(‘)a;,- c Ot

or, in vector notation,
. q0A q .
mv =—qV¢ - at+01°><(V><A)
:qE+%7'*><B, (7.80)

which is, of course, the Lorentz force law.

7.5 Fast Perturbations : Rapidly Oscillating Fields

Consider a free particle moving under the influence of an oscillating force,

m§ = Fsinwt . (7.81)
The motion of the system is then
F sinwt
t) = 4,(0) — — (752)

where ¢, (t) = A + Bt is the solution to the homogeneous (unforced) equation of motion.

Note that the amplitude of the response q — ¢, goes as w™2 and is therefore small when w
is large.

Now consider a general n = 1 system, with
H(q,p,t) = Hy(q,p) + V(q) sin(wt +9) . (7.83)

We assume that w is much greater than any natural oscillation frequency associated with
H,. We separate the motion ¢(t) and p(t) into slow and fast components:

q(t) = q(t) + ¢(t) (7.84)

p(t) =p(t) +=(t) , (7.85)

where ((t) and 7(¢) oscillate with the driving frequency w. Since ¢ and 7 will be small, we
expand Hamilton’s equations in these quantities:

OHy  0*Hy 0°H, 1 9°Hy

= L - 2 - 2

qg+C= 9 + 72 W+8(jaﬁg+2 8@28]3C +8q8*2 C7T+2 07 ™ +... (7.86)
;+7,T__8H0_82H0 _62H07T_183H0 s 0°Hy 1 0°Hy 2

b Y 0q? 9q 0p 2 0¢3 0q2 0p 2 0q Op?

ov . oV .
~ % sin(wt + 9) — 8—52C sin(wt +9) — ... . (7.87)



7.5. FAST PERTURBATIONS : RAPIDLY OSCILLATING FIELDS

13

We now average over the fast degrees of freedom to obtain an equation of motion for the slow
variables ¢ and p, which we here carry to lowest nontrivial order in averages of fluctuating

quantities:
;_mh 1 9°Hp aHO 1 9°Hy , ,
7= op 28q28p<<> <C7r>—|—§ p° ™)
0Hy 1 0%Hy 8H0 1 0%H,

-

07 2 0 { >_aq2aﬁ< w>_§8q8ﬁ2

The fast degrees of freedom obey

. 0%H O°H,
Cz_—o_ +—_0
9q 0p op*
. 0’H, 0’H, av .
W——a—qz —%ﬂ'—a—qSln(wt—i—é).

Let us analyze the coupled equations®

(=A(+Bnr
F=—C(—An+Fe ™

96~

BF BF _4

Sl T ey G
. (A+iw)F iF
 BC—A2—-w? W

Taking the real part, and restoring the phase shift §, we have

—-BF | 1 0V 9°Hy
¢(t) = 2 sin(wt +6) = 00 O

The solution is of the form

Plugging in, we find

+0 (w_3) .

sin(wt + 0)
m(t) = —g cos(wt +0) = é %—Z cos(wt + 0) .

The desired averages, to lowest order, are thus

()
() = (%—Z)

16VW%

(¢ sin(wt +6)) = %2 9 o2

o, .
<7T2> " E (¢ sin(wt +6)) .

(7.88)

(7.89)

(7.90)

(7.91)

(7.95)

(7.96)

(7.97)

(7.98)

(7.99)

(7.100)

(7.101)

3With real coefficients A, B, and C, one can always take the real part to recover the fast variable equations

of motion.
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along with <C7r> = 0.

Finally, we substitute the averages into the equations of motion for the slow variables ¢ and
P, resulting in the time-independent effective Hamiltonian

1 0%Hy (VY
K(g,p)=H,(q,p) + — ——= | — 7.102
(q7p) 0((]7p)+ 4w2 8]52 (aq—> ’ ( )
and the equations of motion
0K . 0K
= — h = —— . 7.103

7.5.1 Example : pendulum with oscillating support

Consider a pendulum with a vertically oscillating point of support. The coordinates of the
pendulum bob are

x={sinf , y=a(t)—~Lcosh. (7.104)
The Lagrangian is easily obtained:
L= %m€2 602 + mla 0 sin 0 + mgl cos 0 + %méﬂ — mga (7.105)
these may be dropped
. d
= $ml?0° + m(g + &)l cos 0+ sma® — mga — p (mla sinf) . (7.106)

Thus we may take the Lagrangian to be
L=1ime 0% 4+ m(g + a)lcos (7.107)

from which we derive the Hamiltonian
2

H(0,p,,t) = Weﬁ — mgl cos @ — mli cos 6 (7.108)
= Hy(0,p,.t) +V,(0) sinwt . (7.109)
We have assumed a(t) = a,sinwt, so
V,(0) = mlagw? cos 0 . (7.110)
The effective Hamiltonian, per eqn. 7.102, is
K(0,p,) = 25;2 — mgl cos 0 + 3majw?sin® 0 . (7.111)
Let’s define the dimensionless parameter
2g¢
e= = (7.112)

w=a

(=] V]
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Figure 7.3: Dimensionless potential v(#) for € = 1.5 (black curve) and € = 0.5 (blue curve).

The slow variable § executes motion in the effective potential V. (0) = mglv(f), with
_ S
v(f) = —cos + 5, Sin 0. (7.113)
€
Differentiating, and dropping the bar on 6, we find that V_;(#) is stationary when

V(0)=0 = sinfcosh = —esinf . (7.114)

Thus, # = 0 and 6 = 7, where sinf = 0, are equilibria. When € < 1 (note € > 0 always),
there are two new solutions, given by the roots of cosf = —e.

To assess stability of these equilibria, we compute the second derivative:

1
v"(0) = cosf + = cos 20 . (7.115)
€
From this, we see that # = 0 is stable (i.e. v”(f = 0) > 0) always, but § = 7 is stable for
€ < 1 and unstable for ¢ > 1. When ¢ < 1, two new solutions appear, at cosf = —e, for
which

v"(cos ™ (—€)) = € — %

, (7.116)
which is always negative since € < 1 in order for these equilibria to exist. The situation is
sketched in fig. 7.3, showing v(6) for two representative values of the parameter e. For e > 1,
the equilibrium at # = 7 is unstable, but as € decreases, a subcritical pitchfork bifurcation is
encountered at € = 1, and § = 7 becomes stable, while the outlying # = cos~!(—e¢) solutions
are unstable.
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7.6 Field Theory: Systems with Several Independent Vari-
ables

2

Suppose ¢q(x) depends on several independent variables: {x!,z2 ..., 2"}. Furthermore,

suppose

S[{da(@)] = /dmﬁ(% Bybar ) | (7.117)
(]

i.e. the Lagrangian density L is a function of the fields ¢, and their partial derivatives
O¢a/0xt. Here (2 is a region in RE. Then the first variation of S is

- or AL 95
5S_/d:c{a¢a R }

2
oL oL 0 oL
— ddxn 56 — [d _ b | .
825 " B0 " ! w{a% aw(awa))} ’ (T

where 02 is the (n — 1)-dimensional boundary of {2, d¥ is the differential surface area, and

n# is the unit normal. If we demand 85/8(@@@)‘ o = 0 of 5¢a| ap = 0, the surface term
vanishes, and we conclude
0S5 oL 0 oL
= — . 7.119
dda(x) 0Py Ozt (8(8u¢a)> ( )

As an example, consider the case of a stretched string of linear mass density © and tension
7. The action is a functional of the height y(z,t), where the coordinate along the string, x,
and time, ¢, are the two independent variables. The Lagrangian density is

oy’ oy \°
£:§u<a—i> —%r<8—z> , (7.120)

whence the Euler-Lagrange equations are

oo 5 oqory oo
- Sy(z,t) Oz \ Oy ot \ 0y

0% 0%

“ o2 Mo

(7.121)

where ¢y = % and § = %. Thus, pyj = 7y”, which is the Helmholtz equation. We've
assumed boundary conditions where §y(zq,t) = 0y(x,,t) = dy(x,ta) = d0y(x,t,) = 0.

The Lagrangian density for an electromagnetic field with sources is

L=—3=F,F"—1j A", (7.122)
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The equations of motion are then

oL a( oL >_0 dr

- [
o5& ~ 55 \ 55n 5 = 9, F ~ ", (7.123)

which are Maxwell’s equations.

Recall the result of Noether’s theorem for mechanical systems:
d <aL aqo>
— == =0, (7.124)
dt \ 9¢, OC o
where G, = G,(q,() is a one-parameter (¢) family of transformations of the generalized
coordinates which leaves L invariant. We generalize to field theory by replacing

4, (t) — da(z,1) | (7.125)

where {¢q(x, 1)} are a set of fields, which are functions of the independent variables {x, y, z,t}.
We will adopt covariant relativistic notation and write for four-vector z# = (ct, x,y, z). The
generalization of dA/dt =0 is

) oL  Odq
Azt \ 0 (dupa) OC

where there is an implied sum on both ; and a. We can write this as 9, J* = 0, where

-0, (7.126)
¢=0

oo 9L 06,

9 (0u¢a) 0OC

(7.127)

¢=0

We call A = J%/c the total charge. If we assume J = 0 at the spatial boundaries of our
system, then integrating the conservation law d, J* over the spatial region {2 gives

A
Cfi—t:/d3:1:80J0:—/d?’xV-J:—jI{dEﬁ-Jzo, (7.128)
Q Q 0N

assuming J = 0 at the boundary 0.

As an example, consider the case of a complex scalar field, with Lagrangian density®

L, 4", 0uth, 00%) = K (9,9 )(0M) — U (™) (7.129)
This is invariant under the transformation ) — e ¢, ¢* — e~ 4p*. Thus,
8_1[}_-1( 81;*__ —iC /%
ac =€ , ac te St (7.130)

4We raise and lower indices using the Minkowski metric Gy = diag (+,—, —, —).
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and, summing over both 1 and ¢* fields, we have

oL ) oL s
J“:W ‘(W)JFW (=)
= %(zp*aﬂw —pOMY*) . (7.131)

The potential, which depends on [t|?, is independent of (. Hence, this form of conserved
4-current is valid for an entire class of potentials.

7.6.1 Gross-Pitaevskii model

As one final example of a field theory, consider the Gross-Pitaevskii model, with

o R
L= 5wy Vg (0 o) (7.132)

This describes a Bose fluid with repulsive short-ranged interactions. Here v (x,t) is again
a complex scalar field, and ¥* is its complex conjugate. Using the Leibniz rule, we have

OS[W*, ] = S[Y* + 0™, + 6]
/dt/dd { B aa_¢+ ihoy* 8—¢—h—2w} v&p—h—sz -V

g (] — ng) (60 + www}

/dt/dd {[—zh&”* v2 29 (|Y)* — ng) ¥ ]w

{ h%—f + h— V2 —2g (|9]* — ng) ¥ } 5¢*} , (7.133)

where we have integrated by parts where necessary and discarded the boundary terms.
Extremizing S[i*, ] therefore results in the nonlinear Schrodinger equation (NLSE),

0 h2
Y = T2 42 (0P ng) (7.134)
as well as its complex conjugate,
: 81/}* _ h2 2,1 % 2 *
—ih 5% = —%V ¥+ 29 (\w] —Tlo)l/J . (7.135)

Note that these equations are indeed the Euler-Lagrange equations:

5S oL o [ ocC
5 =50 a0 (99,0) (7:136)
S oL o [ oc
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with 2# = (t,z)° Plugging in

oL ) . oL . . oL R
and
oL ) oL oL w
90 =ihy —2g (]1/1\ —no)w YW =0 |, IV ——%VIZJ , (7.139)

we recover the NLSE and its conjugate.

The Gross-Pitaevskii model also possesses a U(1) invariance, under

bz, t) — bz, t) = e p(m,t) , V(@) = O (2, t) = e C Yt (a,t) . (7.140)
Thus, the conserved Noether current is then
w_ OL o1 oL o
00,0 0¢ o 00,4* OC o
J = —hy)? (7.141)
J = —LZ (V*VY — V') . (7.142)
2im

Dividing out by h, taking J° = —hp and J = —hj, we obtain the continuity equation,

ap

5 TV Ii=0, (7.143)
where 5
_ 2 . * B *
p=WF  J=g5— (VY- yVYT) . (7.144)

are the particle density and the particle current, respectively.

°In the nonrelativistic case, there is no utility in defining 2° = ¢t, so we simply define 2° = t.



