Chapter 5

Calculus of Variations

5.1 Snell’s Law

Warm-up problem: You are standing at point (z,,y;) on the beach and you want to get to
a point (z,,y,) in the water, a few meters offshore. The interface between the beach and
the water lies at x = 0. What path results in the shortest travel time? It is not a straight
line! This is because your speed v; on the sand is greater than your speed v, in the water.
The optimal path actually consists of two line segments, as shown in Fig. 5.1. Let the path
pass through the point (0,y) on the interface. Then the time T is a function of y:

T() = — /o2 + (y - 01)? + — /23 + (v — )2 - (5.1)
Uy Uy

To find the minimum time, we set

Z_T:O:i Y-y L L Yo — Y
Y Yiyfat+(y—y)? Y2 \fad 4 (g — y)?
sinf;  sinfy
= — . 5.2
o . (5.2)
Thus, the optimal path satisfies

sin 91 (%]
==, 5.3
sin 92 V9 ( )

which is known as Snell’s Law.

Snell’s Law is familiar from optics, where the speed of light in a polarizable medium is
written v = ¢/n, where n is the index of refraction. In terms of n,

nysinf; = nysinb, . (5.4)
If there are several interfaces, Snell’s law holds at each one, so that

n;sint; =n, ;sind, , , (5.5)
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Figure 5.1: The shortest path between (z1,y1) and (z2,y2) is not a straight line, but rather

two successive line segments of different slope.

at the interface between media ¢ and ¢ + 1.

Now let us imagine that there are many such interfaces between regions of very small
thicknesses. We can then regard n and 6 as continuous functions of the coordinate . The

differential form of Snell’s law is

n(z) sin (8(z)) = n(z + dz) sin (6(z + dz))
= (n+n'dz) (sin6 + cos 6§’ dx)

=nsinf + (n/ sinf +n 00809/) dx .

Thus,

ctn@ﬁ——ld—n
de ndr’

If we write the path as y = y(z), then tanf = ¢/, and

d y//
0/ - t -1 7 —
I an vy 1+ y/g )
which yields
1 y" n

Yy 1+y? 0

This is a differential equation that y(x) must satisfy if the functional

T2
ds 1

T[y(a;)] =/ :E/da:n(x) 1+ y?

z1

is to be minimized.

(5.10)
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pavement
v = v,

Figure 5.2: The path of shortest length is composed of three line segments. The relation
between the angles at each interface is governed by Snell’s Law.

5.2 Functions and Functionals

A function is a mathematical object which takes a real (or complex) variable, or several
such variables, and returns a real (or complex) number. A functional is a mathematical
object which takes an entire function and returns a number. In the case at hand, we have

Tly(x)] = /d:BL(y,y’,:v) : (5.11)

where the function L(y,y’,x) is given by

Ly, v, z) = ¢ tn(z)\/1+y?. (5.12)

Here n(z) is a given function characterizing the medium, and y(x) is the path whose time
is to be evaluated.

In ordinary calculus, we extremize a function f(z) by demanding that f not change to
lowest order when we change x — x + dx:

f@+de) = f(z)+ f(x)doe + & f(z) (dz)* + ... . (5.13)

We say that © = 2* is an extremum when f/(z*) = 0.

For a functional, the first functional variation is obtained by sending y(x) — y(z) + dy(zx),
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Figure 5.3: A path y(z) and its variation y(x) + dy(x).

and extracting the variation in the functional to order dy. Thus, we compute

T[y(xz) + dy(x) /dmLy+5yy+5y 7)

z2

oL oL
— /dm{LJr 8—5 Y+ Féy'—k@((éyﬁ)}

1

2
oL oL d
—T[y(:n)]—l-/dx{a—é +8_y’%5y}

oL
e for - (5)
oy oy’
Now one very important thing about the variation dy(x) is that it must vanish at the

endpoints: 0y(z,) = dy(z,) = 0. This is because the space of functions under consideration

satisfy fixed boundary conditions y(z;) = y; and y(z,) = y,. Thus, the last term in the
above equation vanishes, and we have

oL _ |”
oy + — dy

5 (5.14)

2
OL d (0L
= [de |———| == )| dy. 1
/ xlay dw<3y’>] ’ (519
z1
We say that the first functional derivative of T' with respect to y(x) is
orT OL d (0L
=|l=—-——= 5.16
oy(z) |y dx <8y’>] ’ (51

where the subscript indicates that the expression inside the square brackets is to be evaluated
at x. The functional T’ [y(:n)] is extremized when its first functional derivative vanishes,
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which results in a differential equation for y(z),

oL oL
oy, o)

known as the Euler-Lagrange equation. Since L is independent of y, we have

OL _1d ny'
dac y' cdr | \/1+ y?
n/ y/ n y//

= 4+ -7 (5.18)

c \J/14+y? ¢ (1+y’2)3/2

We thus recover the second order equation in 5.9. However, note that the above equation
directly gives
n(z) sinf(x) = const. , (5.19)

which follows from the relation y’ = tan 6. For y(x) we obtain
2,2 d
n"y 2 Yy o

=a°=const. =»> —=-—1n————. 5.20
1492 dx n2(z) — a2 (5.20)

In general, we may expand a functional F'y + dy] in a functional Taylor series,
Fly + dy] = Fly] + /dwl Ki(z1) dy(zy) + %/dycl/dyc2 Ky (z1,22) dy(zy) dy(xs)
+ %/d%/dmz/d% Ky(zy, @y, 23) 0y(2y) 0y () 0y(x3) + ... (5.21)
and we write SF

K, (x,...,2,
o ) 0y(xy) - oy(zn)

(5.22)

for the n'* functional derivative.

5.3 Examples from the Calculus of Variations

Here we present three useful examples of variational calculus as applied to problems in
mathematics and physics.

5.3.1 Example 1 : minimal surface of revolution

Consider a surface formed by rotating the function y(x) about the z-axis. The area is then

/dw 2y 4/ 1 dw (5.23)
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and is a functional of the curve y(z). Thus we can define L(y, y') = 27yy/1 + 3% and make
the identification y(z) <> ¢(t). We can then apply what we have derived for the mechanical
action, with L = L(q, ¢,t), mutatis mutandis. Thus, the equation of motion is

d (0L oL

which is a second order ODE for y(z). Rather than treat the second order equation, though,
we can integrate once to obtain a first order equation, by noticing that

Ay, oL ol _ gL, d(OLy oL, oL, OL
dz |7 oy’ 7oy S oy’ oy’ 4 8yy ox

_ | (0L _oL| oL
- [dm oy’ oy ox (5.25)

In the second line above, the term in square brackets vanishes, thus

, OL

oL dg oL

_L o _ 9z
dx oz’

J = (5.26)

and when L has no explicit z-dependence, J is conserved. One finds
j:27ry-y7/2—27ry\/1+y’2:—27r7y. (5.27)
Solving for ¢/,

dy 27y \ 2 B
T + <7> 1, (5.28)

which may be integrated with the substitution y = % cosh X, yielding

y(z) = b cosh (”” - “> : (5.29)

where a and b = % are constants of integration. Note there are two such constants, as
the original equation was second order. This shape is called a catenary. As we shall later
find, it is also the shape of a uniformly dense rope hanging between two supports, under

the influence of gravity. To fix the constants a and b, we invoke the boundary conditions
y(z1) =y, and y(z,) = ys.

Consider the case where —z; = x, = 7 and y; = y5 = ¥,. Then clearly a = 0, and we have

2o |

; coshk , (5.30)

yozbcosh( > = Y=k
with v = y,/z, and k = x,/b. One finds that for any v > 1.5089 there are two solutions,
one of which is a global minimum and one of which is a local minimum or saddle of A[y(z)].
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Figure 5.4: Minimal surface solution, with y(z) = bcosh(z/b) and y(z¢) = yo. Top panel:
A/27my3 vs. yo/wo. Bottom panel: sech(xo/b) vs. yo/ro. The blue curve corresponds to a
global minimum of A[y(x)], and the red curve to a local minimum or saddle point.

The solution with the smaller value of k (i.e. the larger value of sech k) yields the smaller
value of A, as shown in Fig. 5.4. Note that
Yy cosh(z/b)

Yo  cosh(zo/b) ’ (5.81)

so y(x = 0) = ygsech(zg/b).

When extremizing functions that are defined over a finite or semi-infinite interval, one
must take care to evaluate the function at the boundary, for it may be that the boundary
yields a global extremum even though the derivative may not vanish there. Similarly, when
extremizing functionals, one must investigate the functions at the boundary of function
space. In this case, such a function would be the discontinuous solution, with

y, fv=umx

y(x) =90 ifx <z<uzy (5.32)

Yy if v =z, .

This solution corresponds to a surface consisting of two discs of radii y; and y,, joined
by an infinitesimally thin thread. The area functional evaluated for this particular y(z)
is clearly A = 7(y? 4+ y3). In Fig. 5.4, we plot A/2my2 versus the parameter v = y,/.
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For v > ~. = 1.564, one of the catenary solutions is the global minimum. For v < ~., the
minimum area is achieved by the discontinuous solution.

Note that the functional derivative,

5A oL d (0L 2 (144> — yy")
K(0) = 22 = {@ -4 <£>} = (5.33)

indeed vanishes for the catenary solutions, but does not vanish for the discontinuous solu-
tion, where K (x) = 27 throughout the interval (—z,z,). Since y = 0 on this interval, y
cannot be decreased. The fact that K,(x) > 0 means that increasing y will result in an
increase in A, so the boundary value for A, which is 27Ty(2], is indeed a local minimum.

We furthermore see in Fig. 5.4 that for v < v, ~ 1.5089 the local minimum and saddle
are no longer present. This is the familiar saddle-node bifurcation, here in function space.
Thus, for v € [0, 74) there are no extrema of Afy(x)], and the minimum area occurs for the
discontinuous y(z) lying at the boundary of function space. For v € (74, 7c), two extrema
exist, one of which is a local minimum and the other a saddle point. Still, the area is
minimized for the discontinuous solution. For v € (7., 00), the local minimum is the global
minimum, and has smaller area than for the discontinuous solution.

5.3.2 Example 2 : geodesic on a surface of revolution
We use cylindrical coordinates (p, ¢, z) on the surface z = z(p). Thus,
ds® = dp* + p? d¢* + da®
— {1 + [#'(p)] 2} dp + p* d¢?* | (5.34)
and the distance functional D[¢(p)] is

P2

DIo(p)] = [dpL(6.6'.0) (5.35)
pP1
where
L6, ¢,0) = 1+ 22(p) + 92 (p) . (5.36)
The Euler-Lagrange equation is
oL d (0L oL
9% @ <8—¢’> =0 = o5 const. (5.37)
Thus,
2 4/
oL _ po (5.38)

o0 V1422 + p2 2 -
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where a is a constant. Solving for ¢/, we obtain

2
15— VIHEOI (5.39)

P/ p*—a?

which we must integrate to find ¢(p), subject to boundary conditions ¢(p,) = ¢;, with
i=1,2.

On a cone, z(p) = Ap, and we have

2

dqﬁ:a\/l—l—)@i VI+X2dtant /2 1, (5.40)

p\/p* —a? a’
which yields
d(p) = B+ 1+ A2 tan™! Z—z —1, (5.41)
which is equivalent to
p cos <%> =a. (5.42)

The constants 3 and a are determined from ¢(p,) = ¢,.

5.3.3 Example 3 : brachistochrone

Problem: find the path between (zy,y;) and (z,,y,) which a particle sliding frictionlessly
and under constant gravitational acceleration will traverse in the shortest time. To solve
this we first must invoke some elementary mechanics. Assuming the particle is released
from (a:l, yl) at rest, energy conservation says

%mv2 —mgy = mgy, - (5.43)

Then the time, which is a functional of the curve y(x), is

1= o= o 640

= /dl‘ L(y,y' z) ,
Tl

with
1+ y’2
L(y,y,z) = ———— . 5.45
( ) 29(y1 — y) (545)
Since L is independent of z, eqn. 5.25, we have that
, OL o\ 7-1/2
J=y ?—L— [29(111—1/) (1+y' )} (5.46)
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is conserved. This yields

y1—y
doe = — | —2—L—dy, 5.47
T L (5.47)

with @ = (4972)~!. This may be integrated parametrically, writing
Yy —y = 2asin2(%9) = dr= 2asin2(%9) ae , (5.48)
which results in the parametric equations

z—x,=a(f—sinb) (5.49)
y—y, = —a(l—cosb) . (5.50)

This curve is known as a cycloid.

5.3.4 Ocean waves

Surface waves in fluids propagate with a definite relation between their angular frequency
w and their wavevector k = 27 /\, where X is the wavelength. The dispersion relation is a
function w = w(k). The group velocity of the waves is then v(k) = dw/dk.

In a fluid with a flat bottom at depth h, the dispersion relation turns out to be

Vgh'k shallow (kh < 1)
w(k) = v/ gk tanh kh ~ (5.51)

Vgk  deep (kh>1) .

Suppose we are in the shallow case, where the wavelength A is significantly greater than
the depth h of the fluid. This is the case for ocean waves which break at the shore. The
phase velocity and group velocity are then identical, and equal to v(h) = \/gh. The waves
propagate more slowly as they approach the shore.

Let us choose the following coordinate system: x represents the distance parallel to the
shoreline, y the distance perpendicular to the shore (which lies at y = 0), and h(y) is the
depth profile of the bottom. We assume h(y) to be a slowly varying function of y which
satisfies 2(0) = 0. Suppose a disturbance in the ocean at position (z,,y,) propagates until
it reaches the shore at (z;,y; = 0). The time of propagation is

~ [ds 7 1497
T[y(z)] —/7 —/dx Th) (5.52)

We thus identify the integrand

1—|—y’2

T (5.53)

L(y,y,z) =




5.3. EXAMPLES FROM THE CALCULUS OF VARIATIONS 11
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Figure 5.5: For shallow water waves, v = y/gh. To minimize the propagation time from a
source to the shore, the waves break parallel to the shoreline.

As with the brachistochrone problem, to which this bears an obvious resemblance, L is
cyclic in the independent variable x, hence

, 0L

J = L= { h(y) (1+ ’2)}_1/2 (5.54)
- y ay/ - g y y .
is constant. Solving for y'(z), we have
dy a
tand = o0 =\ a1 (5.55)

where a = (¢J)~! is a constant, and where @ is the local slope of the function y(z). Thus,
we conclude that near y = 0, where h(y) — 0, the waves come in parallel to the shoreline.
If h(y) = ay has a linear profile, the solution is again a cycloid, with

x(0)
y(0)

where b = 2a/a and where the shore lies at § = 0. Expanding in a Taylor series in 6 for
small 0, we may eliminate § and obtain y(z) as

(6 — sinf) (5.56)

—b
=b(1—cosh), (5.57)

yo) = ()P B3 4 (5.58)

A tsunami is a shallow water wave that manages propagates in deep water. This requires
A > h, as we’ve seen, which means the disturbance must have a very long spatial extent out
in the open ocean, where h ~ 10km. An undersea earthquake is the only possible source;



12 CHAPTER 5. CALCULUS OF VARIATIONS

the characteristic length of earthquake fault lines can be hundreds of kilometers. If we take
h = 10km, we obtain v = \/gh ~ 310m/s or 1100 km /hr. At these speeds, a tsunami can
cross the Pacific Ocean in less than a day.

As the wave approaches the shore, it must slow down, since v = \/gh is diminishing. But
energy is conserved, which means that the amplitude must concomitantly rise. In extreme
cases, the water level rise at shore may be 20 meters or more.

5.4 Appendix : More on Functionals

We remarked in section 5.2 that a function f is an animal which gets fed a real number x
and excretes a real number f(z). We say f maps the reals to the reals, or

fiR—-R (5.59)

Of course we also have functions g: C — C which eat and excrete complex numbers,
multivariable functions h: RY — R which eat N-tuples of numbers and excrete a single
number, etc.

A functional F[f(x)] eats entire functions (!) and excretes numbers. That is,
F: {f(a:) | a:eR} ~R (5.60)

This says that F' operates on the set of real-valued functions of a single real variable, yielding
a real number. Some examples:

Flf(e) = § [dz [f(@)) (5.61)
Flf(e) = § [do [a0' Ko f(0) £ (0 (5.62)

i el (@)} o

In classical mechanics, the action S is a functional of the path ¢(t):

= /bdt {%mq’2 - U(q)} . (5.64)

We can also have functionals which feed on functions of more than one independent variable,

such as
o p o\ 2 o\ 2
_ 1YY 1 (D
y(z,t)] = /dt/dx {2’u<8t> 27<8:p> } , (5.65)
ta Xa
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glt)

Figure 5.6: A functional S[q(t)] is the continuum limit of a function of a large number of
variables, S(q1,...,qun).

which happens to be the functional for a string of mass density 4 under uniform tension 7.
Another example comes from electrodynamics:

S[AH(x,t)] /d3 /dt{ —Flu F —l—lj A“} (5.66)

which is a functional of the four fields {A°, A, A% A3}, where A° = c¢. These are the

components of the 4-potential, each of which is itself a function of four independent variables

(20, 21, 22, 23), with 20 = ct. The field strength tensor is written in terms of derivatives of

the A*: F,, = 0,A, — 0,A,, where we use a metric g,, = diag(+,—, —, —) to raise and
lower indices. The 4-potential couples linearly to the source term .J,, which is the electric
4-current (cp, J).

We extremize functions by sending the independent variable x to = + dz and demanding
that the variation df = 0 to first order in dz. That is,

flz+dx) = f(z) + f/(x)de + %f”(:ﬂ)(dm)Q +..., (5.67)
whence df = f'(z) dz + O((dz)?) and thus

f'(z*) =0 <= 2" an extremum. (5.68)

We extremize functionals by sending

f(x) = f(x) + of (x) (5.69)

and demanding that the variation § F' in the functional F[f(z)] vanish to first order in ¢ f ().
The variation 0 f(x) must sometimes satisfy certain boundary conditions. For example, if
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F[f(x)] only operates on functions which vanish at a pair of endpoints, i.e. f(za) = f(z,) =
0, then when we extremize the functional F we must do so within the space of allowed
functions. Thus, we would in this case require 0f(x,) = 6 f(z,) = 0. We may expand the
functional F[f + 0f] in a functional Taylor series,

FIf +6f] = F[f] + /da:l Ky (21) 6/ (2,) + 2 /dxl/dx2 K, (a1, 22) 8 (2,) 5f (1)
+ %/dml/d:nz/d:rg Ky (g, s 3) 0f (1) 8 (29) 0 (123) + ... (5.70)

and we write

e
6f (1) 0f(xn)
In a more general case, F' = F[{f;(x)} is a functional of several functions, each of which is
a function of several independent variables.! We then write

(5.71)

Kn(xlw B axn)

FILS+ 011 = FHEN + [do Ki(,) 65(@)
+ %/dacl/d/ac2 K;j(ml,m2) Of;(xq) 5fj(a:2)
+ %/dwl/dwz/dxs Kiz’;jk(wbw27x3)5fi(w1)5fj(w2)5fk(w3) o

(5.72)
with s
K2 (2, g, ... ,) = . (5.73)
5fi1 ($1) 5f22 ($2) 5fin (m”)
Another way to compute functional derivatives is to send
fx) = fx)+ed(x—a))+...+€,0(x—2x,) (5.74)

and then differentiate n times with respect to €; through ¢,. That is,

5"F o

Flf(zx)+ed(x—ay)+...+€6,0(x—z,)] . (5.75)

€1 =€y="€,=0

6f(zy)---0f(zn) O€y -+ ey,

Let’s see how this works. As an example, we’ll take the action functional from classical
mechanics,

Sla(t)] = / dt {3md® ~ Ulg)} . (5.76)

Tt may be also be that different functions depend on a different number of independent variables. E.g.
F=F[f(x), 9(x,y), h(z,y,2)].
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To compute the first functional derivative, we replace the function ¢(t) with ¢(t)+e€d(t—1t1),
and expand in powers of e:

ty

S[al) +es(t — t0)] = Slat] + ¢ [t {m 8/t ~ 1) - U'(q) 8t 1)}
= —c{mit) + U'(a(t)) } (5.77)
hence 59
o ~{maiw) + U (at) | (5.78)

and setting the first functional derivative to zero yields Newton’s Second Law, mg = —U’(q),
for all t € [ta, tp]. Note that we have used the result

oo

/dt §(t—t1) h(t) = —H(t1), (5.79)

—00
which is easily established upon integration by parts.

To compute the second functional derivative, we replace
q(t) — q(t) + €, 0(t —t1) + €5 0(t — t2) (5.80)

and extract the term of order €; €5 in the double Taylor expansion. One finds this term to
be

€, € /dt {m §(t—t1)8(t—t2) —U"(q)0(t —t1)6(t — tg)} : (5.81)

Note that we needn’t bother with terms proportional to €3 or e since the recipe is to

differentiate once with respect to each of €, and €, and then to set ¢, = €, = 0. This
procedure uniquely selects the term proportional to €, €,, and yields

529

3q(t1) q(ta) = —{m5”(t1 —t2) +U"(q(t1)) 6(t1 — tz)} ) (5.82)

In multivariable calculus, the stability of an extremum is assessed by computing the matrix
of second derivatives at the extremal point, known as the Hessian matrix. One has

of
8:Ei

0%f
8:Ei al‘j

=0 Vi ; Hy=

(5.83)

x* x*

The eigenvalues of the Hessian H;; determine the stability of the extremum. Since H;; is
a symmetric matrix, its eigenvectors n“ may be chosen to be orthogonal. The associated
eigenvalues )\, defined by the equation

Hiing = Aami s (5.84)
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are the respective curvatures in the directions n®, where a € {1,...,n} where n is the
number of variables. The extremum is a local minimum if all the eigenvalues A, are positive,
a maximum if all are negative, and otherwise is a saddle point. Near a saddle point, there
are some directions in which the function increases and some in which it decreases.

In the case of functionals, the second functional derivative Ky(z1,22) defines an eigenvalue
problem for § f(z):

Tp
[ Kalos20) 6 (0) = 2672 (5.85)
Ta
In general there are an infinite number of solutions to this equation which form a basis in
function space, subject to appropriate boundary conditions at z, and . For example, in

the case of the action functional from classical mechanics, the above eigenvalue equation
becomes a differential equation,

d2
—{m =t U"(q*(1)) } Sq(t) = Ndoq(t) (5.86)

where ¢*(t) is the solution to the Euler-Lagrange equations. As with the case of ordinary
multivariable functions, the functional extremum is a local minimum (in function space)
if every eigenvalue A\, is positive, a local maximum if every eigenvalue is negative, and a
saddle point otherwise.

Consider the simple harmonic oscillator, for which U(q) = %mw% ¢>. Then U"(q*(t)) =
mw3; note that we don’t even need to know the solution ¢*(¢) to obtain the second functional
derivative in this special case. The eigenvectors obey m(dq + w% 0q) = —Adq, hence

bq(t) = Acos (\Jwd + (\/m)t+¢) | (5.87)
where A and ¢ are constants. Demanding dq(t.) = dq(t,) = 0 requires

wg + (A/m) (tp — ta) = nm , (5.88)

where n is an integer. Thus, the eigenfunctions are

t—1a
dq,(t) = Asin <n7r : > , (5.89)
th, — ta
and the eigenvalues are
. nm\ 2 2
An = m<?) —mwg , (5.90)

where T' = t, — t,. Thus, so long as T' > m/w,, there is at least one negative eigenvalue.

Indeed, for Z—g <T< % there will be n negative eigenvalues. This means the action

is generally not a minimum, but rather lies at a saddle point in the (infinite-dimensional)
function space.
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To test this explicitly, consider a harmonic oscillator with the boundary conditions ¢(0) = 0
and ¢(T') = Q. The equations of motion, ¢ + w% q = 0, along with the boundary conditions,
determine the motion,

. Q sin(wyt)
)= =2— V7 5.91
() sin(wyT) ( )

The action for this path is then

S[q*()]:/dt{ i — tmad 2

2 12
mw
= _7062 /dt { coszwot — Sin2w0t}

2 SlnszT )
= imw, Q? ctn (w,T) . (5.92)
Next consider the path ¢(t) = Qt/T which satisfies the boundary conditions but does not

satisfy the equations of motion (it proceeds with constant velocity). One finds the action
for this path is

Wo

Slg(t)] = tmw, @ (LT — %wOT> . (5.93)

Thus, provided wyT" # nm, in the limit 7" — oo we find that the constant velocity path has
lower action.

Finally, consider the general mechanical action,

ty

Sla(t)] = [atLGa.d.0). (5.94)

ta

We now evaluate the first few terms in the functional Taylor series:

L or o
Slq*(t) + dq( /dt 0 5g; 56; 5.95
[q*(t) + dq(t { (q"q", aq it 5 q*q (5.95)
1 aQL 2 2
AN P P RN I PI0 ¥ RN RECI 70 Y RN
T3 dgi0g| 240 T agag,| *%°0% 3 ag,aq; | 00U T }
q q q*

To identify the functional derivatives, we integrate by parts. Let ®_(t) be an arbitrary
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function of time. Then

/dtcp ) 84i(t) = /dt<I>()5qi(t)

tp

/dt cI)ij (t) 5ql 5q]

ta

/dt@lj ) dgi(t) 0¢;(t)
ta

Thus,

oS
dqi(t)

6%
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(5.96)
/dt/dt Oy (1) 5(t — )%5%( t) dq;(t")
/dt/dt/ (0 3/ (E ¢ 6q:(t) 3q; (#) (5.97)

tp

/dt dt' @5(t)3(t — 1)

ty

- / dt [dt’ [éij(t) §(t—t) 4+ @;;(t) 8" (t — )| 0gi(t) dg; (t) .

tp
d d ,
it @5%( )5(11(75)

tp

0qi(t) 3¢ (t')

ta ta
(5.98)
oL d(@L)]
_ |98 4ok (5.99)
dqi  dt \ 0g;
[ a4 4 q*(t)
oL L
= St —t) — —— 8t —t)
dq; 0q; dG; 0;
{ G997 | ooy G945 g 1y
RL  d/ 9L |
_— — [ — St —+t . Nl
" [2 04: 04 dt(aCJiOQj)_q*(t)( )} (5:100)




