## 7.2 Atomic Physics

Atomic Spectra Bohr Model Extensions of the Bohr model X-ray emission Electrons in Atoms Quantum numbers Pauli Exclusion Principle

## Atomic spectra and atomic structure.

- The spectra of atoms provide information about the energies of the electron in the atom.
- Sharp peaks at discrete wavelengths indicate that only specified energies are allowed in the atom.
- For the Hydrogen atom the Bohr theory explains the energies in a simple manner based on a quantization of angular momentum.
- The quantization is explained by the de Broglie theory in terms of standing waves for the electron.









































## Bohr theory

Shows that the energy levels in the hydrogen atom are quantized.

Correctly predicts the energies of the hydrogen atom (and hydrogen like atoms.)

The Bohr theory is incorrect in that it does not obey the uncertainty principle. It shows electrons in well defined orbits.

Quantum mechanical theories are used to calculate the energies of electrons in atoms. (i.e. Shrödinger equation)

## Extension of the Bohr Theory

Bohr theory can only be used to predict energies of Hydrogen-like atoms. (i.e. atoms with only one electron) This includes H, He<sup>+</sup>, Li<sup>2+</sup> ....

For example He<sup>+</sup> ( singly ionized helium has 1 electron and a nucleus with a charge of Z = +2)

For this case the energy for each state is multiplied by  $Z^2 = 4$ 

$$E_{n}^{=4} = -\frac{m_{e}k_{e}^{2}z^{2}e^{4}}{2\hbar^{2}} \left(\frac{1}{n^{2}}\right)$$

$$E_{n}^{} = -13.6(Z^{2})\frac{1}{n^{2}} = -13.6(2^{2})\left(\frac{1}{n^{2}}\right) = -54.4\left(\frac{1}{n^{2}}\right)eV$$
for He<sup>+</sup>



























go into the lowest energy unoccupied state.

The periodic properties of the elements as shown in the Periodic Table can be explained by the Pauli Exclusion Principle by properties of filled shells.

| TAE                         | BLE 28.1        |   |                    |  |  |
|-----------------------------|-----------------|---|--------------------|--|--|
| Shell and Subshell Notation |                 |   |                    |  |  |
| n                           | Shell<br>Symbol | e | Subshell<br>Symbol |  |  |
| 1                           | K               | 0 | 5                  |  |  |
| 2                           | L               | 1 | p                  |  |  |
| 3                           | М               | 2 | d                  |  |  |
| 4                           | N               | 3 | ſ                  |  |  |
| 5                           | 0               | 4 | g                  |  |  |
| 6                           | Р               | 5 | h                  |  |  |
|                             |                 |   |                    |  |  |

| Number of Electrons in Filled Subshells and Shells |                                                                  |                                                           |                                           |  |  |  |
|----------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|--|--|--|
| Shell                                              | Subshell                                                         | Number of<br>Electrons in<br>Filled Subshell              | Number of<br>Electrons in<br>Filled Shell |  |  |  |
| K ( <i>n</i> = 1)                                  | $s(\ell = 0)$                                                    | 2                                                         | 2                                         |  |  |  |
| L (n = 2)                                          | $s(\ell = 0) \\ p(\ell = 1)$                                     | $\begin{pmatrix} 2\\ 6 \end{pmatrix}$                     | 8                                         |  |  |  |
| M (n = 3)                                          | $s(\ell = 0)$<br>$p(\ell = 1)$<br>$d(\ell = 2)$                  | $\left. \begin{array}{c} 2\\ 6\\ 10 \end{array} \right\}$ | 18                                        |  |  |  |
| N $(n = 4)$                                        | $s(\ell = 0)$<br>$p(\ell = 1)$<br>$d(\ell = 2)$<br>$f(\ell = 3)$ | $\begin{pmatrix} 2 \\ 6 \\ 10 \\ 14 \end{pmatrix}$        | 32                                        |  |  |  |



| Noble g            | e ga                  | <b>3S</b> (<br>nave F | CON<br>⁼illed \$      | figura<br>Subshells | atio             | ns              |     |                 |
|--------------------|-----------------------|-----------------------|-----------------------|---------------------|------------------|-----------------|-----|-----------------|
| He Z= 2            | 1s²<br>1s²            | 252                   | 2n <sup>6</sup>       |                     |                  |                 |     |                 |
| Ne Z=10<br>Ar Z=18 | 13<br>1s <sup>2</sup> | 23<br>2s <sup>2</sup> | 2p<br>2p <sup>6</sup> | 3s² 3p              | 0 <sup>6</sup>   |                 |     |                 |
| Kr Z= 36           | 1s <sup>2</sup>       | 2s <sup>2</sup>       | 2p <sup>6</sup>       | 3s² 3               | p <sup>6</sup> 3 | d <sup>10</sup> | 4s² | 4p <sup>6</sup> |
|                    |                       |                       |                       |                     |                  |                 |     |                 |

| Electronic Configurations of Some Elements |        |                               |           |                           |    |        |                               |                          |  |  |
|--------------------------------------------|--------|-------------------------------|-----------|---------------------------|----|--------|-------------------------------|--------------------------|--|--|
| z                                          | Symbol | Ground-State<br>Configuration |           | Ionization<br>Energy (eV) | z  | Symbol | Ground-State<br>Configuration | Ionization<br>Energy (eV |  |  |
| 1                                          | н      |                               | 1s1       | 13,595                    | 19 | К      | [Ar] 4s <sup>1</sup>          | 4.339                    |  |  |
| 2                                          | He     |                               | 1.12      | 24,581                    | 20 | Ca     | 4.42                          | 6.111                    |  |  |
| 5                                          | 233    | STOWNER                       | Care Inc. | 10000                     | 23 | Sc     | 3.44x2                        | 6.54                     |  |  |
| 3                                          | Li     | [He]                          | 211       | 5,390                     | 22 | Ti     | $3d^{2}4s^{2}$                | 6.83                     |  |  |
| 4                                          | Be     |                               | 252       | 9,320                     | 23 | v      | 3.47452                       | 6.74                     |  |  |
| 5                                          | в      |                               | 2,2201    | 8.296                     | 24 | Cr     | 34241                         | 6.76                     |  |  |
| 6                                          | C      |                               | 2,2202    | 11.256                    | 25 | Mo     | $3d^{5}4s^{2}$                | 7.432                    |  |  |
| 7                                          | N      |                               | 2,2203    | 14.545                    | 26 | Fe     | $3d^{6}4x^{2}$                | 7.87                     |  |  |
| 8                                          | 0      |                               | 2,2204    | 13.614                    | 27 | Co     | $3d^{7}4s^{2}$                | 7.86                     |  |  |
| 9                                          | F      |                               | 252203    | 17.418                    | 28 | Ni     | $3d^{n}4s^{2}$                | 7.633                    |  |  |
| 10                                         | Ne     |                               | 21220     | 21.559                    | 29 | Cu     | 3d284s1                       | 7.724                    |  |  |
| 9.4                                        | 2014   |                               |           | 2.05027                   | 30 | Zn     | 3429452                       | 9.391                    |  |  |
| 11                                         | Na     | [Ne]                          | 3.1       | 5.138                     | 31 | Ga     | 3d284s24p1                    | 6.00                     |  |  |
| 12                                         | Mg     |                               | 3.12      | 7.644                     | 32 | Ge     | 3d204s24p2                    | 7.88                     |  |  |
| 13                                         | Al     |                               | 3s23p1    | 5.984                     | 33 | As     | 3410 452403                   | 9.81                     |  |  |
| 14                                         | Si     |                               | 3,2302    | 8.149                     | 34 | Se     | 3d284x24p8                    | 9.75                     |  |  |
| 15                                         | P      |                               | 3,2303    | 10.484                    | 35 | Br     | 3429412405                    | 11.84                    |  |  |
| 16                                         | s      |                               | 3,2304    | 10.357                    | 36 | Kr     | 34284+2400                    | 13.996                   |  |  |
| 17                                         | CI     |                               | 3,2303    | 13.01                     |    |        |                               |                          |  |  |
| 18                                         | Ar     |                               | 3,2308    | 15.755                    |    |        |                               |                          |  |  |