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Atomic spectra and atomic
structure.

The spectra of atoms provide information about
the energies of the electron in the atom.

Sharp peaks at discrete wavelengths indicate that
only specified energies are allowed in the atom.

For the Hydrogen atom the Bohr theory explains
the energies in a simple manner based on a
guantization of angular momentum.

The quantization is explained by the de Broglie

theory in terms of standing waves for the
electron.

Atomic structure
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The scattering of alpha particles (He2*) nuclei from a thin
gold foil. The back scattering of a few alpha particles
showed that the nucleus is a small compact object.

Planetary model of the atom
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Atomic Spectra
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Discrete spectral lines are observed.

Balmer series for Hydrogen

ultraviolet visible

A(nm) ; Z 486.1 656.3

364.6 410.2 434.1
~~Lowest A Highest A

A series of peaks closer together (continuum) at low A

Rydberg Constant

The Balmer series could be analyzed mathematically in
terms of an empirical equation.

1 1 1
Rl Z T
Rydberg Constant Ry = 1.0973732x10” m*

n=34,5..... Integers larger than 2.

Disagreement with classical theory

Classical physics for the planetary model of the atom
predicts that the energy of the electron
can have any value - cannot explain discrete spectral lines.

The classical theory could not explain the stability of the
atom, why the electron does not fall into the nucleus
radiating energy.
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Planetary Model of the atom

Bohr Theory

1. Electrons move in circular orbits.

2. Only specified atomic energy levels are allowed.

3. Energy is emitted when electron go from one energy
level to another.

4. The orbital angular momentum of the electron is
“quantized” in units of h/2x = f (called h bar)

L=mvr=nh

h has units of angular momentum

mvr = (kg)[%](m) = sz

2

2 2
h:J~s:[kgm )s:kgim
s s




Angular momentum of a tennis ball

L =n#A s quantized. What is n for the ball?
r=0.5m

m = 0.1 kg

v=2m/s m

2
L =mvr = (0.1kg)(2m/s)(0.5m) = 0.1"‘9’Tm -0.11-s
h _ 6.6x10°J s

n =1.05x10*J s

- 2z 2z
n _L_ O.JJ%-AS ~10% L
n  1.0x107J-s

n
n is so large that L appears continuous

Angular momentum of a typical
electron in an atom

m=9.1x10-31kg
r=0.1x10°m
v=10" m/s

L =mvr = (9.1x10*kg)(10"m/s)(0.1x10°m) = 9x10*J-s
L 9x10*J3s
7 1.05x10*J-s

L is much smaller.
uantization is apparent
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Classical dynamics
For central force (hydrogen atom)
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but any value of r is allowed

Results from Bohr theory

Only specific values of r are allowed that

depend on universal constants
n’h?
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n=3

(eliminate v)

n=1,2,3, ... integers
radius increases as n?
For n=1
(1)?(1.05x107%Js)

r= =5.3x10"m
17 (9.1x10 *'kg)(8.9x10°NmC 2)(L.6x10 °C)?
Size of the Hydrogen atom in the ground state 0.053 nm

Bohr theory for hydrogen atom

Classical energies

any value of r is allowed

Bohr model ‘e \ : \‘
N

Only values of r are allowed that b
follow the quanization condition >

mvr =nh

-------- integers
angular momentum is quantized

Total Energies

Classical

2

E = KE + PE = 8
2r

Total energy varies as 1/r

m.kZe’ (1
B =" 2h* (nzj

Bohr

Total energy of allowed states with n=1, 2, 3,
varies as 1/n?




Excited state energy levels

n EeV)
Energy levels are quantized % 0.00
(proportional to 1/n?) -0z
4 =0.8504
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Emission energies e
Minat~ Minia =4 ARre AE
hfmax =13.6 eV 1 -13.606

Predicts spectral lines in the uItréQibiéf(Lyman series)
and infrared (Paschen series), maximum energies, continuum.

Agreement with Rydberg equation
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Example

Find the wavelength in the hydrogen emission
spectrum for transition from n=3 to n=2.

| i 1 11
- n=2 X B R[ﬂ B ni‘ma\ ]
n=1 % = (1.097x107m’1)(2i273—12]
% =1.097x10" G —%] ~1.52x10°m*

) =6.56x10"'m = 656nm

red line in Balmer series

Explanation of Bohr theory in terms
of the de Broglie wavelength

h
mvr = nz— quantization of angular momentum
4

2nr = n(LJ =nk
mv
/ Integral no. of wavelengths.

’,.n P E J|

circumference = ni

Quantization of angular momentum is equivalent to forming
circular standing waves. (Constructive interference)

Bohr theory

Shows that the energy levels in the hydrogen atom are
quantized.

Correctly predicts the energies of the hydrogen atom (and
hydrogen like atoms.)

The Bohr theory is incorrect in that it does not obey the
uncertainty principle. It shows electrons in well defined
orbits.

Quantum mechanical theories are used to calculate the
energies of electrons in atoms. (i.e. Shrédinger equation)

Extension of the Bohr Theory

Bohr theory can only be used to predict energies of
Hydrogen-like atoms. (i.e. atoms with only one electron)
This includes H, He*, Li?* ....

For example He* ( singly ionized helium has 1 electron
and a nucleus with a charge of Z = +2)

For this case the energy for each state is multiplied by
ZZ :4 2,2.4
E - ,w(ij

2n? n?

E, = —13.6(22)i2 = —13.6(22)(%j = —54.4(%) eV
n n n

for He*




Characteristic X-rays are due to
emission from heavy atoms
excited by electrons
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A Bohr model for x-ray emission

Inner shell electrons
Energy from Bohr model
E, = szf(13'6)iz
n

@ Z. is an effective
charge of the nucleus

due to screening.

Characteristic x-rays

The wavelength of characteristic x-ray peaks due to
emission from high energy states of heavy atoms (high 2).

Characteristic x-rays
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X-ray emission

Calculate the wavelength for K, x-ray emission of Mo
(Z=+42) The electron in the L shell must be in a I=1 state
Bohr model  Screening due to 1 e- in K shell

Lshell n=2>—@ @ . 2o, =2-1
\ E tonety = *13.6(2—1)2 (27];]
Kshell n=I—2——— K,
_ el
AE ~136(42- /(] - 3) = 1.7x10%V B = 13621 IQJ
AE=hf=1¢
Py

34 8 73 pm
. hc _ (6.63x10J)(3.0x10°m/s) —7.3x10'm

TAE  (1.6x10°J/eV)(1.71x10%eV)

Z = Z-1 due to screening A pim >
E,., =-(Z-1)%(13.6) eV High energies due to high Z ;2
| . 'Y‘ff .
Calculated " ‘
value | Mo |
73 pm |
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Electrons in atoms.
Electrons in atoms exist in discrete energy levels

The pattern of energy levels which results from a quantum
mechanical rule called the Pauli Exclusion Principle. is
responsible for the periodicity in the chemical properties of
the different elements as seen in the Periodic Table.




Quantum calculations show that more states
are needed to describe the electrons in an atom

—— 10 18
6 states
n=3 — 2
6 8 states
n=2 —_—
n=1 — > 2 states
Bohr atom Quantum mechanics

The number of states determined
by quantum numbers.

Orbital angular momentum

Classically the angular momentum L of an electron moving
in a circle can have any value
L

In quantum mechanics the m
values of the angular momentum

are quantized and specified by a

orbital angular momentum quantum no. £

For an electron with a principle quantum no. n
the value of ¢ ranges from 0 to n-1.

i.e. forn=2, £ can have values of 0 and 1.

Orbital magnetic quantum number

m, =1
Magnetic field .
mI:O =1

m, =-1
Classically an electron maving in a circle is a current
which results in a magnetic dipole along the direction of L.
Classically, the dipole can have any orientation with
respect to a field.
In quantum mechanics, only discrete orientations are
allowed. The orientation are determined by the orbital
magnetic quantum no. m,
The value of m, ranges from — ¢ to + (.

i.e. for (=1, m, can have values of -1, 0, and 1.

Spin magnetic quantum number

f mg =1/2
e \ mg=-1/2

In quantum mechanics an electron has an intrinsic
magnetic moment due to spin. The magnetic
moment can have two orientations in a magnetic
field determined by a spin quantum number mg

mg =+1/2 or -1/2

for an electron 2 spin states are possible + 1/2

Atomic energy levels and quantum

numbers.
range of values
principle quantum number n 123
angular momentum quantum number ¢ 0,1ton-1
orbital magnetic quantum number m, —(,.t0..+ ¢
) 1
spin magnetic quantum number mg —§,0r+§

The state of an electron is specified by the set of its quantum
numbers (n, ¢, m; , my)

The number of states is determined by the set of possible
quantum numbers.

Electronic states in an atom n=1,2 and 3

no no.
n m mg no. of n, | n
states
1 0 0 % |2 2 2
2 0 +% |2 2
2 i - s n 8
2 i Gis D 6
2 - sn 12
3 0 0 +% |2 2
3 1 1 % 2
3 1 o 4% 2 ] 6
3 1 1 w2
3 2 -2 s 2
3 2 -4 s 2 18
3 2 0 +% |2 10
3 2 s 2
3 2 2 s 2




Pauli Exclusion Principle

No two electrons in an atom can have the same quantum
number, n, |, m;, or mg

To form an atom with many electrons the electrons
go into the lowest energy unoccupied state.

The periodic properties of the elements as shown in the
Periodic Table can be explained by the Pauli Exclusion
Principle by properties of filled shells.

Electrons in atoms- Shell Notation

TABLE 28.1
Shell and Subshell Notation
Shell Subshell

n Symbol { Symbol
1 K 0 5

2 L 1 P

3 M 2 d

4 N 3 f

] (8] 4 g

6 P 5 h

TABLE 28.3
Number of Electrons in Filled Subshells and Shells
Number of Number of
Electrons in Electrons in
Shell Subshell Filled Subshell Filled Shell
K(in=1) (€ =0) 2 2
) s =0) 2 ]
Lin=2) pE=1) 6 8
s€=0) 2
M(n=3)  plt=1) 6 18
dif = 2) 10
s(f = 0) 9
T ple=1) 6 N
N(n=4) At = 2) 10 32
fié =3) 14

Periodic Table of the Elements

Dmitri Mendeleev (1834-1907) noble
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Noble gas configurations

Noble gases have Filled Subshells

He Z=2 1s?

Ne Z=10 1s>  2s? 2p°

Ar 7=18 1s? 2s? 2p¢  3s? 3p°

Kr z=36 1s? 2s2 2p¢ 3s? 3p®  3dY0 4s? 4pS

Noble gases have filled subshells

TaBLE 284 Stable, difficult to ionize A ->A*+e-
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