
Solutions Assignment 9

Verify the relations in (8.52) The semimajor axis is found from

2a = rmax + rmin =
ro
1� � +

ro
1 + �

=
2ro
1� �2

a =
ro

1� �2

The semiminor axis is found from

b = ymax:

Since y = r sin� the maximum value for y is determined by setting dy=d� = 0:
We �nd

dy

d�
= ro

d

d�

sin�

1 + � cos�
= ro

 
cos�

1 + � cos�
+

� sin2 �

(1 + � cos�)
2

!
dy

d�
= ro

 
cos� (1 + � cos�) + �

�
1� cos2 �

�
(1 + � cos�)

2

!
= ro

 
cos�+ �

(1 + � cos�)
2

!
:

Setting this expression to zero yields cos�o = ��: Hence

ymax =
ro sin�o
1 + � cos�o

=
ro
p
1� �2

1� �2 =
rop
1� �2

= b

The o¤set, d, is simply

d = rmax � a =
ro
1� � �

ro
1� �2

d =
ro
1� �

�
1� 1

1 + �

�
=

�ro
1� �2 = �a:

8.19 At perigee and apogee respectively,

rp = yp +Re =
`2=GMe

1 + �
; and ra = ya +Re =

`2=GMe

1� � :

Solving for the eccentricity we �nd

rp
ra

=
1� �
1 + �

! (1 + �) rp=ra = 1� �

� =
1� rp=ra
1 + rp=ra

=
ra � rp
ra + rp

=
ya � yp

ya + yp + 2Re

� =
2700

3300 + 2� 6400 = :1677
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From the statement of the problem, as the satellite crosses the y axis � = �=2
and

ry = y +Re = `
2=GMe = (1 + �) (yp +Re)

y = (1 + �) (yp +Re)�Re = (1 + �) yp + �Re
y = 1:1677� 300 + :1677� 6400 = 1424km

8.20 The expression for the orbit is

r (�) =
`2=GM�
1 + � cos�

:

At apogee

rmax =
`2=GM�
1� � ! rmax (1� �) = `2=GM�:

Therefore if we hold rmax �xed and let `! 0 then � must approach 1. For � = 1;

rmin =
`2=GM�
1 + �

= `2=2GM�:

As ` ! 0; rmin ! 0 as well. With this analysis it is clear that if rmax is �xed
and ` is small then the eccentricity is close to 1. This is an orbit for which the
semimajor axis is much larger than the semiminor axis. The semimajor axis is
expressed as

2a = rmax + rmin =
`2=GM�
1� � +

`2=GM�
1 + �

= rmax +
1� �
1 + �

rmax = rmax
2

1 + �
:

For � very close to 1, a ' rmax=2:

8.21 (b) Kepler�s third law states

�2 =
4�2

GM�
a3:

For the case described in 8.20, a ' rmax=2. Hence in terms of rmax Kepler�s
third law becomes

�2 =
�2

2GM�
r3max:

(c) For this orbit the total time to fall from r = rmax (where its total
energy is just its potential energy) is

T = �
r
�

2

Z 0

rmax

drp
U (rmax)� U (r)

= �
r
�

2

Z 0

rmax

drp
�G�M�=rmax +G�M�=r

T = �
s

1

2GM�

Z 0

rmax

drp
�1=rmax + 1=r

= �
s

1

2GM�

Z 0

rmax

p
rdrp

1� r=rmax
:
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The minus sign is used as the radial velocity is negative (the radius is decreasing).
De�ning

r = rmax cos
2 �;

the integral becomes

T =

s
1

2GM�
r3=2max

Z �=2

0

cos � (2 sin � cos �d�)

sin �
=

s
2

GM�
r3=2max

Z �=2

0

cos2 �d�

T =

s
2

GM�
r3=2max

�

4
=

s
1

8GM�
�r3=2max:

This comet approaches the Sun on a nearly radial line. As it reaches the Sun it
makes a U turn and returns.

(d,e) The period for this orbit is

� = 2T =

s
1

2GM�
�r3=2max:

Squaring both sides yields

�2 =
�2

2GM�
r3max;

which is in exact agreement with part (b).

8.23 (a,b) The potential energy for a particle of mass m in the force �eld

F (r) = � k
r2
+
�

r3

is

U (r) = �k
r
+

�

2r2
:

If the particle moves with an angular momentum L then the expression for the
conservation of energy is

E =
1

2
m
�
r
2
+ U (r) +

L2

2mr2
=
1

2
m
�
r
2
� k
r
+

�

2r2
+

L2

2mr2

E =
1

2
m
�
r
2
� k
r
+
L2 +m�

2mr2
:

As usual we r = 1=u or equivalently u = 1=r: Also we note that d=dt =
�
�d=d�:

First consider the radial kinetic energy term

�
r =

dr

du

du

dt
= � 1

u2

�
�
du

d�
= �Lu

2

m

1

u2
du

d�
= � L

m

du

d�

�
r
2
=

�
L

m

�2�
du

d�

�2
:
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Substituting this result into the conservation of energy in the special case where
k = 0 we �nd

L2

2m

�
du

d�

�2
+
L2 +m�

2m
u2 = E;�

du

d�

�2
+
�
1 +m�=L2

�
u2 =

2m

L2
E;

1

1 +m�=L2

�
du

d�

�2
+ u2 =

2m

L2 +m�
E:

From observation the solution to this nonlinear di¤erential equation is

u = u0 cos��; with � =
p
1 +m�=L2 and u0 =

p
2mE= (L2 +m�) =

q
2mE=�2L2:

With k nonzero the expression for the conservation of energy is

L2

2m

�
du

d�

�2
+
L2 +m�

2m
u2 � ku = E

Going through the same procedure as that with k = 0 we �nd

1

1 +m�=L2

�
du

d�

�2
+ u2 � 2mk

L2 +m�
u =

2m

L2 +m�
E

1

�2

�
du

d�

�2
+ u2 � 2mk

�2L2
u =

2m

�2L2
E:

Completing the square results in

1

�2

�
du

d�

�2
+ u2 � 2mk

�2L2
u+

m2k2

�4L4
=

2m

�2L2
E +

m2k2

�4L4
;

1

�2

�
du

d�

�2
+

�
u� mk

�2L2

�2
=

2m

�2L2
E +

m2k2

�4L4
:

From the result for the case with k = 0 we see that the solution is now

u =
mk

�2L2
+

s
2m

�2L2
E +

m2k2

�4L4
cos��;

u =
mk

�2L2

�
1 +

q
1 + 2�2L2E=mk2 cos��

�
;

where again
� =

p
1 +m�=L2:

Inverting this expression we �nd

r (�) =
�2L2=mk

1 +
q
1 + 2�2L2E=mk2 cos��
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This is of the form
r (�) =

c

1 + � cos��
;

where

c = �2L2=mk and � =
q
1 + 2�2L2E=mk2:

(c) This orbit is closed whenever � = n=m; a rational number. Note that
as �! 0 the parameter � ! 1 and the solution is that for a Kepler orbit.

8.29 The kinetic energy of the Earth would remain unchanged. However
the potential energy would immediately be halved. In a circular orbit the virial
applies not just on average but for all time. Hence prior to the Sun losing its
mass

T =
n

2
U = �1

2
U; and E = T + U = U=2:

Since U is negative this is the energy of a bound particle. If the Sun lost half its
mass then relative to its new potential energy T = �U: Now the total energy is

E = T + U = 0:

The Earth is just barely unbound.

8.35 Assume that the initial radius for the circular orbit is R1. After a
backward thrust given by � = v2=v1 < 1; the orbit will become an ellipse with
the rocket located at the apogee. Hence

R1 = `
2
1=GM =

`22=GM

1� �2
=
�2`21=GM

1� �2
=

�2

1� �2
R1:

This implies that
�2 = 1� �2 ! �2 = 1� �2:

At the perigee the distance from the Sun is R3 given by

R3 =
`22=GM

1 + �2
=
�2`21=GM

2� �2
=

�2

2� �2
R1:

Solving for �2 we �nd�
2� �2

�
R3 = �

2R1 ! �2 =
2R3

R1 +R3
:

Since R3 = R1=4; � =
p
2=5 = 0:6325:

To obtain a circular orbit at this radius an additional backward thrust is
required at the perigee. Since R3 is held �xed we �nd

R3 =
`22=GM

1 + �2
= `23=GM = �02`22=GM

�02 =
1

1 + �2
=

1

2� �2
=
R1 +R3
2R1

:
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Again R3 = R1=4 so that �
0 =

p
5=8 = 0:7906:

The �nal velocity is

v3 = �0
v2 (per)

v2 (apo)
�v1 = �

0 `2=R3
`2=R1

�v1 =

r
R1 +R3
2R1

R1
R3

r
2R3

R1 +R3
v1

v3 =
p
R1=R3v1 = 2v1:

11.6

(a) The Lagrangian for this system (m1 = m2 = m; k1 = 3k; and k2 = 2k)
is

L = 1

2
m

�
�
x
2

1 +
�
x
2

2

�
� 1
2
3kx21 �

1

2
2k (x2 � x1)2 :

Hence the equations of motion are

m
��
x1 = �3kx1 � 2k (x1 � x2) = �5kx1 + 2kx2

m
��
x2 = �2k (x2 � x1)

Assuming a solution of the form

z =

�
a1
a2

�
ei!t

where x = Re z; we �nd�
5k �m!2 �2k
�2k 2k �m!2

� �
a1
a2

�
=

�
0
0

�
:

A nontrivial solution requires the secular equation,

det

�
5k �m!2 �2k
�2k 2k �m!2

�
= m2!4 � 7km!2 + 6k2 = 0;

to be satis�ed. The normal mode frequencies are

!21 = k=m; and !
2
2 = 6k=m:

(b) To �nd the ratios of a1 and a2 for !1 we �nd�
5� 1 �2
�2 1

� �
a1
a2

�
=

�
4 �2
�2 1

� �
a1
a2

�
= 0:

Hence
2a1 = a2:

In this mode the oscillations are in phase with the amplitude of x2 being twice
that of x1:
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To �nd the ratios of a1 and a2 for !1 we �nd�
5� 6 �2
�2 �4

� �
a1
a2

�
=

�
�1 �2
�2 �4

� �
a1
a2

�
= 0:

Hence
a1 = �2a2:

In this mode the oscillations are exactly out of phase with the amplitude of x1
being twice that of x2:

11.9 (a) The equations of motion when m1 = m2 = m and k1 = k2 =
k3 = k are

m
��
x1 = �2kx1 + kx2

m
��
x2 = �2kx2 + kx1:

The normal coordinates are

�1 = (x1 + x2) =2 and �2 = (x1 � x2) =2:

Hence
x1 = �1 + �2 and x2 = �1 � �2:

Substituting this result into the equations of motion leads to

m

�
��
�1 +

��
�2

�
= �2k (�1 + �2) + k (�1 � �2) = �k�1 � 3k�2

m

�
��
�1 �

��
�2

�
= �2k (�1 � �2) + k (�1 + �2) = :� k�1 + 3k�2

Adding and subtracting these two expressions results in

m
��
�1 = �k�1;

m
��
�2 = �3k�2:

(b) The solutions are

�1 = A1 cos (!1t� �1) and �2 = A2 cos (!2t� �2)

where !21 = k=m and !22 = 3k=m: The general solution for the displacements is

x (t) =

�
x1 (t)
x2 (t)

�
=

�
�1 (t) + �2 (t)
�1 (t)� �2 (t)

�
x (t) = A1

�
1
1

�
cos (!1t� �1) +A2

�
1
�1

�
cos (!2t� �2) :
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