Solutions Assignment 8

7.38 (a) Using spherical polar coordinates for an inverted cone with a half
angle «a the relation between z and r is z = r cos a.
The Cartesian coordinates are

r=rsinacos®, y =rsinasing, z = rcosa.
The Cartesian components of the velocity are
T =rsinacos¢ — rsinasin¢¢, y = rsinasin ¢ + rsin acos ¢¢p, z = rcosa.
The kinetic energy is then
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T:Qm(cc +y +z>:2m<r +r25in2a¢)

In a uniform gravitational field the potential energy is U = mgz = mgr cos a.
Hence the Lagrangian is

1 2 9 . 9 .2
E:§m r 4+ 7r°sin CY¢ — Mmgr Ccos (.

(b) The Lagrange equations of motion are

ro oL _ mr sin? cuq.S2 —mgcosa = imiﬂ =mr
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Rewriting the radial equation we find
22 -
— —— —gcosa=r.
m2r3sin® a g
If £, = 0 the the acceleration parallel to the surface of the cone is z = —gcos

which is exactly what you would obtain sliding down a frictionless surface with
this incline. At equilibrium » = 0 and
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—Ff——=gcosa—r, = ——F—.

m2r3sin? o g °  m2gsin®acosa

(¢) If the particle is in equilibrium and given a slight kick so that r = r,+e,
the radial equation becomes
02 -
—3——=F ——¢€=c¢.
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The solution to this equation is a stable simple harmonic oscillator with fre-
quency
9 2 _ 3gcosa 2 _ 3gcosa
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7.41 In cylindrical polar coordinates with z = kp? the Cartesian coordi-
nates are
T = pcoswt, y = psinwt, z = kp2.

The Cartesian components for the velocity are
= peoswt — pwsinwt, y =z = psinwt + pwcoswt, z = 2kpp

Hence the kinetic energy is
1 .2 .2
T = 3m (p + p2w? + 4kp*p >

Since the potential energy is U = mgz = mgkp? the Lagrangian is

1 .2 .2
L= Zm (p + pPw? + 4kp*p ) — mgkp?.
The equation of motion is

or ) .2 _d . 9+
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) .2 oy - .2
pw* + 4kpp — 2gkp = (1 +4kp ) p+ 8kpp
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pw? — 2gkp = (1 + 4kp2) p+4kpp .
At equilibrium p = p = 0. This means
(w2 — ng;) P, = 0.

One of the solutions occurs at p, = 0. For small fluctuations, p = ¢, about this
position we find
(w2 — ng) e=¢

This is stable only if 2gk > w?. In that case the system oscillates at a frequency
0% = 29k — w2

7.47 (a) The transformation between the Cartesian coordinates for N par-
ticles and the generalized coordinates only depends on a single generalized co-
ordinate. Hence 7" = 7 4 (¢) . This allows us to write the kinetic energy as

1 0Ty 0T a2 1 .2
T— = i = _Aq,
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where A is defined as

0T 0T
A= — =,
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With this definition is it clear that A is a positive definite quantity and may
depend on ¢ but not ¢g. The Lagrangian is then

1 .2
L=5Aq ~U(q).

The Lagrange equation of motion is

L 1dA 2 dU_i(A(q)@:%.z

9q 2dg? " dg  dt

The equation of motion then becomes

Ag = ,1@ 2 _ ﬂ
=73 dq q dg’
(b) o
At equilibrium ¢ = ¢ = 0. Hence
dU (g
(90) _ 0.
dq

where ¢, is a position of equilibrium (there may be no solutions or numerous
possible solutions).

(c¢) Given a solution ¢, then for small fluctuations about g,, ¢ = g, + € we
find
_OU(gote) _ d*Ul(qo)

Aé = —
‘ 9q dg?
This is a stable equilibrium only if
d*U (qo)
———=>0
dqg? >

which implies that U (g,) is at least a local minimum for U.

7.50 The modified Lagrangian (with Lagrange multiplier) for this problem
. 1 21 .2
Ezimlx +§m2y +magy + Az +y).

The modified Lagrange equations for x and y are

T o A=mz

Yy 1 mag+A=may

From the constraint we must have = —y. Multiplying the z equation by —1
and adding the two expressions while taking into account that z = —y, we find
mag = (ma+mi)y

o mo
Y g + M g.



The Lagrange multiplier is given by

A= my (é)—g) = my (mz—l)g
mo + my
o mimso
 omatmy
Since o7 o7
Festm = )\ (t) == d—=—=1
x ( ) ax7 an 85[} )
we find that the constraint force is
chtr — /\ — mims .
mo +my

This is the tension in the rope. All of these results match those obtained from
free body diagrams using Newton’s second law.

7.51 (a) The Lagrangian for the simple pendulum in terms of « and y (y
positive in the downward direction) subject to the constraint /2 + y? = £ is

1 2 .2
Ezm(x +y ) +mgy + A/ x2 + y2.

2

The modified Lagrange equations are

At = miﬂx\%:mi,

Y mfg'—>mg+)\g:my.

NCE ‘

mg + A

Now
/€ =sin¢ and y/l = cos ¢,

Hence

IS
|

é% (cos (bqb) =/ (— sin gb(‘b2 + cos ¢qb> ,

6% (— sin ¢5¢> =/ <— cos d)g‘if — sin qi)qb) .

;
The two equations of motion are now
.2 .
Asing = mfl <— sin ¢ + cos ¢¢> ,

mg—+ Acos¢p = ml ( cosqﬁéﬁ2 — sinqﬁézé) .



If we multiply the x equation by cos ¢, the y equation by — sin ¢, and add we
find

—mgsin ¢ = mﬁé,

which is the usual pendulum equation.
To solve for the Lagrange multiplier multiply the x equation by sin ¢, the y
equation by cos ¢, and add with the result

.2 2
mgcosd+ A= —mlp — A= —mgcosp—mlep .

Since o7
F;S”’ = (1) 9z and chs”’ =X (1)

of
y
we find 2
FEr =% = Asing and Fy™" =AY = xcos 6.

.2
Hence the magnitude of the constraint force is F'" = |\| = mgcos ¢ + mle .
This is the expression for the tension in the rod.

Area under string The maximum area under a string of length ¢ can be
found via the method of Lagrange multipliers. Expressing the area as

Az/ydx—l—)\/\/l—i—y’de.

The first integral of the Euler Lagrange equation results in

/
y+A\/W—Ay’\/%7=yo—>(y—yo)v1+y’2=—A
2 2 _
p_ AN =y y2o) L my)dy
(y_yo) Az—(y—yo)2
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The last expression is the equation of a semicircle of radius A = R whose center
is located at (x,,y,) . If the circle is to pass through the origin (0,0) then

0=y, + Rz—x?),

and both y, and the term inside the square root must vanish. This means that
Yo = 0 and z, = R. The expression is then

y=1\/R?—(z - R)*

The area under this semicircle is A = 7R?/2 and the length of the string is
{=n1R.



8.3 The Lagrangian for this problem is (y is measured upward from the
table top) is
1 2 1 2 1 )
L= gmuyy + gmays = ok (Y1 —y2 = L)" = migys — magys.
Defining the center of mass coordinate, Y = (myy; + maya) / (m1 + ma), and
the relative coordinate, y = y; — y2, the Lagrangian takes the form

1.2 1 .2 1 2 mo mq
1.2 1 2 1
L = MY + gy —ik(y—L)z—MgY.

The two Lagrange equations of motion with their solutions are

oL iy L 5
Y a—Y——Mg—MYHY(t)——?qt + Vot + Yy
y o a—y:—k(y—L):,uy—>y:L+Asm(wt—5),

where w? = k/p. The intial conditions for the relative coordinate lead to

y(t=0) = L—-§=0,
y(t=0) = —vg— A=—vp/w,
y(t) = L —vy/wsinwt.

The initial conditions for the center of mass coordinate lead to

L
Y(t=0) = mj\z Y,
Y(t=0) = mﬁ)‘):vo
L 1
vt = 22Ty g2

M M 2
8.9 (a) The Lagrangian in terms of 71 and 7”5 for this problem (m; = mq = m)
is
Lo 2\ L >
Ezim i+ T, _ik(“l_ ol —L)".

- —_— . .
In terms of R and 7 the Lagrangian is
2 2

: 1 = 1
L=mER + imT = 5k(r— L) = Low + Lrar



(c) In terms of r and ¢ the Lagrangian for the relative coordinates is
1 (.2 2\ 1
Lol = Zm (r + 729 ) - Ek(rfL)Z.

The two equations of motion are

1 .
1) 8/:@ = §mr2¢ = ¢ = const
99
Orey 1 -7 1.
T 5 = 3™ mre —k(r—L)—imr
1 £ 1 .
r 373 —k(r—L)= S

If r = r, and 7 = 0 then the motion is a circle with radius r, where

1~
2 mr3

=k(ro—L).

If (;5 = 0 then the angular momentum vanishes, ¢ = 0, and
1 .
—k(r—1L)= g

This is the equation for oscillating motion about r = L with a frequency w? =
2k/m.

8.12 (a) The effective potential is

GuM 1 L2 GM 1
Uepp = — =)

r 2pur?
To find the radius for a circular orbit we must satisfy

dUeff (’I”O) _ GM 42 _ _ 52
dr o2 rg_o_”qo_GM'

(b) The second derivative evaluated at this radius is

2 2 3 4
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The curvature is positive, hence circular orbits are stable. The frequency small
radial oscillations about 7, is

w=2" _Jam)t e = ey e,

TOSC




The orbital rate, gf), is found from

(= 12— o=t/
6 = 2T _(GM? ) = (M) ).

Torb

The angular velocities are identical, which means the orbital period is equal to
the period of radial oscillations. Hence the orbit must be closed.

8.14 (a) For a potential U = kr™, the force is given by

As long as nk > 0 this force is attractive.

(b) The effective potential is
2

2ur?’

Ueff =kr" 4+

At equilibrium (circular orbit) dU,s/dr vanishes, hence

2 L2

dUeff (T0> _ nkrn—l _ L
dr

To determine if this orbit is stable we need to find d?U,yy/dr?,

dQUeff (7o) n—2 L? 1 n+2 2
T = n(n—l)kro —|—3M—Té:%(n(n—1)k7“o + 3L /,U)
dQUeff (r0) 1 L? 9 1 L?

dr? rd n(n )k/mk +3L%u ri (n+2) u

Hence this is greater than zero only if n > —2.

(c) The oscillation frequency is

L
w=-—7vVn+2.
Hry
The orbital frequency is
0=

Hence the ratio of the periods is

Tosc = Torb/ vn + 2.



This is consistent with the result in problem 8.12 for which n = —1. Clearly if
v/n 4+ 2 is a rational number, n/m, then

NTose = MTorp = 1.

This time T is the time required for the radial oscillations to undergo n complete
oscillations. If this is equal to an integer number of orbital periods then the
position of the orbit is idential to its position at time 7" previously and the orbit
is closed. Note if n = —1,2,7 then v/n + 2 = 1,2, 3. For these values the period
for the radial oscillations is equal to, 1/2, or 1/3 of the orbital period. These
orbits are closed.



