
Solutions Assignment 5

5.11 From the conservation of energy we have

E =
1

2
mv21 +

1

2
kx21 =

1

2
mv22 +

1

2
kx22;

2E

m
= v21 + !

2x21 = v
2
2 + !

2x22

Solving for the angular frequency yields

!2 =
v22 � v21
x21 � x22

:

Since E = kA2=2 we have for A2

A2 =
2E

k
=

2E

m!2
=
v21 + !

2x21
!2

= v21=!
2 + x21;

A2 =
v21
�
x21 � x22

�
v22 � v21

+
x21
�
v22 � v21

�
v22 � v21

;

A2 =
x21v

2
2 � x22v21
v22 � v21

:

5.18 If the mass is located at a position (x; y) ; then to second order in the
displacements, the lengths of the springs are given by

`1 =

q
(a+ x)

2
+ y2 = (a+ x)

q
1 + y2= (a+ x)

2 ' (a+ x)
 
1 +

1

2

y2

(a+ x)
2

!

`1 ' a+ x+
1

2

y2

(a+ x)
' a+ x+ 1

2

y2

a

`2 ' a� x+ 1
2

y2

a
:

Since the unstretched length is `o; the potential energy of the two springs (again
to second order in the displacements) is

U = U1 + U2 =
1

2
k
�
(`1 � `o)2 + (`2 � `o)2

�
;

U =
1

2
k

 �
a� `o + x+

1

2

y2

a

�2
+

�
a� `o � x+

1

2

y2

a

�2!
U = k

�
(a� `o)2 + x2 + (a� `o) y2=a

�
;

U = k
�
(a� `o)2 + x2 + (1� `o=a) y2

�
:

This is the form of an anisotropic oscillator with kx = 2k and ky = 2k (1� `o=a) :
The equilibrium at the origin is stable in the x direction however in the y
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direction the spring constant is greater than zero only when a > `o: The physics
here is clear, if the springs are under compression, a < `o; then when the mass
moves away from the origin in the vertical direction the compression in the
springs continue to push the mass even further away from the origin.

5.23 The EOM for a damped oscillator is

m
d2x

dt2
+ b

dx

dt
+ kx = 0! m

d2x

dt2
+ kx = �bdx

dt
;

where the damping force is Fdmp = �bdx=dt: The mechanical energy is given
by

E =
m

2

�
dx

dt

�2
+
k

2
x2:

The rate of change of this energy is

dE

dt
=

�
m
d2x

dt2
+ kx

�
dx

dt
= �bdx

dt

�
dx

dt

�
= Fdmp

dx

dt
;

which is the power dissipated by the damping force (�bdx=t < 0), i.e. the rate
of energy dissipation.

5.27 (a) A critically damped oscillator satis�es

x (t) = C1e
��t + C2te

��t:

Solving for the times when x (t) = 0; we �nd

(C1 + C2t) e
��t = 0! (C1 + C2t) = 0! t = �C1=C2:

This is the only solution other than e��t = 0 whose solution is t =1:
(b) An overdamped oscillator satis�es

x (t) = C1e
�
�
��
p
�2�!2o

�
t
+ C2e

�
�
�+
p
�2�!2o

�
t
:

Solving for the times when x (t) = 0; we �nd�
C1 + C2e

�2
p
�2�!2ot

�
e
�
�
��
p
�2�!2o

�
t
= 0;

e�2
p
�2�!2ot = �C1=C2;

t =
ln (�C2=C1)

2
q
�2 � !2o

:

Again only one solution other than that at t =1:
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5.44 (a) The expression for the position of a driven weakly damped oscil-
lator being driven at ! = !o is

x (t) = A cos (!ot� �) +Atre��t cos (!1t� �tr) :

After the transients have died out we have x (t) = A cos (!ot� �) and
�
x (t) =

�!oA sin (!ot� �) : Hence the energy stored in the spring is

E =
1

2
m
�
x
2
(t) +

1

2
kx2 =

1

2
m
�
x
2
(t) +

1

2
m!2ox

2;

E =
1

2
m!2oA

2
�
sin2 (!ot� �) + cos2 (!ot� �)

�
=
1

2
m!2oA

2:

(b) From problem 5.23 we know that

dE

dt
=

�
m
d2x

dt2
+ kx

�
dx

dt
= �bdx

dt

�
dx

dt

�
= Fdmp

dx

dt
;

so that

Fdmp
dx

dt
= �b

�
dx

dt

�2
= �b!2oA2 sin2 (!ot� �) = �2�m!2oA2 sin2 (!ot� �) :

Now the average power dissipated per cycle is 1/2 of this and

hP i = �m!2oA2:
Integrating this over one cycle yields

�Edis = �m!
2
oA

2 2�

!o
= 2��m!oA

2:

(c) Now the expression

2�E=�Edis = �m!
2
oA

2=2��m!oA
2 = !o=2�;

which is the de�nition for Q.

6.9 Consider the integral

I =

Z P

O

�
y02 + yy0 + y2

�
dx =

Z P

O

f (y; y0) dx:

For this integral to be stationary then y must satisfy the Euler Lagrange equa-
tion,

d

dx

@f

@y0
� @f
@y

= 0! d

dx
(2y0 + y)� y0 � 2y = 0

2y00 � 2y = 0! y00 � y = 0
y = A sinhx+B coshx:

The curve must pass through (0; 0) and (1; 1) : Passing through the origin re-
quires B = 0 while passing through (1; 1) requires

1 = A sinh 1! A = 1= sinh 1

y = sinhx= sinh 1:
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6.11 The path for the integral for which

I =

Z 2

1

p
x
p
1 + y02dx =

Z 2

1

f (y0; x) dx

is stationary is found from the Euler Lagrange equation

d

dx

@f

@y0
� @f
@y

=
d

dx

@f

@y0
= 0! @f

@y0
= a

p
x

y0p
1 + y02

= a! xy02 = a2
�
1 + y02

�
�
x� a2

�
y02 = a2 ! dy

dx
=

ap
x� a2

y � y0 = a

Z
dxp
x� a2

= 2a
p
x� a2�

y � y0
2a

�2
= x� a2

This is a parabola that is symmetric about y = y0:

6.15 Measuring y positive in the downward direction, the velocity of the
bead as it descends is v =

p
v20 + 2gy: Hence the time to descend from point 1

to point 2 is

T =

Z 2

1

p
dx2 + dy2

v
=

Z 2

1

p
dx2 + dy2p
v20 + 2gy

:

To simplify the Euler Lagrange equation it is convenient to write this as

T =

Z 2

1

p
1 + x02p
v20 + 2gy

dy =
1p
2g

Z 2

1

p
1 + x02p
v20=2g + y

dy:

The Euler Lagrange equation is

d

dy

@f

@x0
� @f
@x

=
d

dy

@f

@x0
= 0:

Hence
@f

@x0
=

x0p
v20=2g + y

p
1 + x02

=
1p
2a
;

where a is a constant. Solving for x0;

2ax02 =
�
v20=2g + y

� �
1 + x02

�
!
�
2a� v20=2g � y

�
x02 = v20=2g + yZ

dx =

Z p
v20=2g + yp

2a� v20=2g � y
dy =

Z p
up

2a� u
du;
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where we have de�ned u = y + v20=2g: Again make the substitution u =
a (1� cos �) = 2a sin2 �=2; and du = (2a sin �=2 cos �=2) d�: The integral then
becomes

x =

Z p
2a sin �=2p
2a cos2 �=2

(2a sin �=2 cos �=2) d� = 2a

Z �
sin2 �=2

�
d�

x = a

Z
(1� cos �) d� = a (� � sin �) ; and y = a (1� cos �)� v20=2g:

This is the same curve that we obtained for the Brachistochrone except that
it is shifted up by the height v20=2g (remember y is positive in the downward
direction).

Green�s Function Given the Green�s function,

G (t� t0) = (t� t0) e��(t�t
0)� (t� t0) ;

�nd the particular solution when the forcing function is g; a constant.
From our discussion in class we have

xp =

Z 1

�1
G (t� t0) gdt0 = g

Z 1

�1
(t� t0) e��(t�t

0)� (t� t0) dt0;

xp = g

Z t

�1
(t� t0) e��(t�t

0)dt0;

where this last step was due to the step function vanishing when t0 > t: Now
changing variables to � = t� t0 we have

xp = �g
Z 0

1
�e���d� = g

Z 1

0

�e���d� = g=�2;

which is the solution we obtained via observation in class.
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