
Solutions Assignment 4

4.35 (a) Assuming that the length of the string is `; then ignoring the size
of the pulley the gravitational potential energy is

U (x) = �m1gx�m2g (`� x) :

The kinetic energy including the rotational energy of the pulley is

T =
1

2
m1

�
x
2
+
1

2
m2

�
x
2
+
1

2
I!2;

T =
1

2

�
m1 +m2 + I=R

2
� �
x
2
:

In this last step we included the nonslip condition, ! =
�
x=R: Hence, the total

energy is

E =
1

2

�
m1 +m2 + I=R

2
� �
x
2
�m1gx�m2g (`� x) :

(b) To �nd the EOM we di¤erentiate this expression and �nd�
m1 +m2 + I=R

2
� �
x
��
x = (m1g �m2g)

�
x;�

m1 +m2 + I=R
2
� ��
x = (m1 �m2) g:

The three separate EOM are

m1
��
x = m1g � TR;

m2
��
x = �m2g + TL;

I
��
� = (TR � TL)R:

Since
��
� =

��
x=R; dividing the last equation by R we see that if we add them up

we obtain the expression we obtained by di¤erentiating the expression for the
conservation of energy.

4.36 (a) The potential energy for this arrangement of masses and pulley is

U = �mgh�MgH:

The total length of the string is given by ` = H +
p
b2 + h2; where

p
b2 + h2 =

b= sin � and h = b= tan �: This allows us to rewrite the potential as a function of
�;

U (�) = �mgb= tan � �Mg (`� b= sin �) :

Ignoring the constant (�Mg`) we can write the potential as

U (�) = gb (M= sin � �m= tan �) :
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(b) To �nd a position of possible equilibrium we take the derivative of U (�)
and �nd

dU (�)

d�
= gb

�
�M cos �

sin2 �
+

m

tan2 �

1

cos2 �

�
=

gb

sin2 �
(m�M cos �) :

The condition for equilibrium is

cos � = m=M:

The equilibrium condition can only be satis�ed if m � M:. When m = M;
equilibrium occurs at � = 0 which requires an in�nitely long string. However if
m < M then the equilibrium condition is possible when � = cos�1m=M:
(c) Simply balancing the vertical forces for each of the masses leads to

Mg = T; and mg = T cos �:

Substituting for T yields
cos � = m=M;

which is consistent with the solution in (b).

4.37 (a) To within a constant (that depends on the length of the string)
the potential energy relative to the position at � = 0 is

U (�) =MgR (1� cos�)�mgR�:

(b) Equilibrium occurs when

dU (�)

d�
=MgR sin��mgR = 0! sin� = m=M:

As in problem 4.36 this can only occur if m < M: To determine the stability we
examine d2U=d�2 at the equilibrium position. This results in

d2U
�
� = sin�1m=M

�
d�2

=MgR cos
�
sin�1m=M

�
= �gR

p
M2 �m2:

The plus sign applies when �+ is in the �rst quadrant, while the minus sign
means that �� is in the second quadrant, i.e. �� = � � �+:
Determining equilibrium from balancing torques (about the axle),

MgR sin� = mgR! sin� = m=M;

yields the identical result.
(c) The plots of the potential energy, U=MgR; for m=M = :7 (solid line) and

m=M = :8 (dashed line)are shown below.
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If the system is released from � = 0 for the case m=M = :7; the wheel passes
through equilibrium and comes to rest at � � 1:9rad and returns to � = 0: For
a heavier m, m=M = :8; the wheel passes through equilibrium and passes over
the top, � = �; and continues on:
(d) The critical value of m=M corresponds to the solution for unstable equi-

librium occurring when U = 0: This relation is given by

U
�
��
�
= MgR

�
1� cos��

�
�mgR��

U
�
��
�
= MgR

�
1 +

p
1�m2=M2 �

�
� � sin�1m=M

�
m=M

�
= 0

The solution to this transcendental equation is m=M = :7246: The plot of the
potential energy at this value of m=M is shown above as a dotted line.

4.39 (a) The energy for an oscillating pendulum is

E =
1

2
m

�
`
�
�

�2
+mg` (1� cos�) = 1

2
m

�
`
�
�

�2
+ 2mg` sin2 �=2:

The maximum amplitude for �; � = �; occurs when
�
� is zero and E =

2mg` sin2 �=2: Solving for
�
� we �nd

�
�
2

= 4
g

`

�
sin2 �=2� sin2 �=2

�
;

�
� = 2

r
g

`

�
sin2 �=2� sin2 �=2

�
:

Integrating this equation we �ndZ
dt = t =

1

2

s
`

g

Z �

0

d�q
sin2 �=2� sin2 �=2

:
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Since the period is four times the time it takes for � to go from 0 to � we have

� = 2

s
`

g

Z �

0

d�q
sin2 �=2� sin2 �=2

=
�o
�

Z �

0

d�q
sin2 �=2� sin2 �=2

;

where as we saw in problem 4.34, �o = 2�
p
`=g: Using the substitution Au =

u sin�=2 = sin�=2; yields

Adu =
d�

2
cos�=2 =

d�

2

q
1� sin2 �=2 = d�

2

p
1�A2u2:

The period can then be expressed as

� =
2�o
�

Z 1

0

dup
1�A2u2

p
1� u2

=
2�o
�
K
�
A2
�
;

where K is a complete elliptic integral of the �rst kind. The values of K are
tabulated.
(b) In the limit � << 1; then the expression for � becomes

� = 2

s
`

g

Z �

0

d�q
sin2 �=2� sin2 �=2

' 2

s
`

g

Z �

0

2d�p
�2 � �2

� ' 4

s
`

g

Z �=2

0

�cos �d�

�cos �
= 2�

s
`

g
:

Here we have used the substitution � = �sin � to perform the integration.
The period in this limit is the same as that in the small amplitude pendulum
problem.
(c) If the amplitude is small but not very small we can assume

1p
1�A2u2

' 1 + 1
2
A2u2:

The integral for the period becomes reduces to

� ' 2�o
�

Z 1

0

dup
1� u2

+
2�o
�

A2

2

Z 1

0

u2dup
1� u2

:

Making the usual substitution u = sin �; we �nd

� ' 2�o
�

Z �=2

0

d� +
�o
�
A2
Z �=2

0

sin2 �d� = �o

�
1 +

1

4
sin2 �=2

�
:

This shows that the correction to the period for small amplitudes is second
order. For example when � = �=4 we �nd � = 1:037�o as compared to the
numerical result � = 1:040�o: This shows that the expansion is very accurate
even for � as large as �=4:
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4.46 In an elastic collision between two masses, m1 and m2, both the
kinetic energy and momentum are conserved. This is expressed as

m1v
2
1 = m1v

02
1 +m2v

02
2 ;

m1
�!v 1 = m1

�!v 01 +m2
�!v 02;

where the prime denotes the velocities after the collision. Taking the scaler
product of the conservation of momentum with itself we �nd

m2
1v
2
1 = m

2
1v
02
1 +m

2
2v
02
2 + 2m1m2

�!v 01 � �!v 02:

Subtracting the conservation of energy (after multiplying through by m1) and
solving for �!v 01 � �!v 02 yields

�!v 01 � �!v 02 =
m1 �m2

2m1
v022 :

From this expression we see that if m1 > m2 then cos � > 0 and � < �=2: On
the other hand if m1 < m2 then cos � < 0 and � > �=2:

4.47 (i) There are a couple of ways to do this. I prefer transforming the
system to a frame in which the center of mass is stationary, the CM frame. The
velocity of this frame is

vcm =
m1v1 +m2v2
m1 +m2

:

The initial velocities of the two particles in the center of mass frame are

u1 = v1 � vcm and u2 = v2 � vcm:

Note that the total momentum of the two particles vanishes in this frame
(m1u1 + m2u2 = 0). In an elastic collision the kinetic energy as well as the
momentum is conserved (in all frames). Hence in the center of mass frames the
velocities in the center of mass frame are simply reversed from their values prior
to the collision as this conserves both energy and momentum. Hence,

u01 = �u1 = vcm � v1 and u02 = �u2 = vcm � v2:

Transforming back to the original frame requires that we add vcm to these
velocities with the result

v01 = 2vcm � v1 and v02 = 2vcm � v2:

If we examine the relative velocities after the collision we �nd

v01 � v02 = � (v1 � v2) ;

which is the desired result.
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(ii) The usual approach is to simultaneously satisfy conservation of momen-
tum and energy,

m1v1 +m2v2 = m1v
0
1 +m2v

0
2

m1v
2
1 +m2v

2
2 = m1v

02
1 +m2v

02
2 :

Rearranging these equations so that all of the terms involving m1 are on one
side and those with m2 are on the opposite side leaves

m1 (v1 � v01) = m2 (v
0
2 � v2)

m1

�
v21 � v021

�
= m2

�
v022 � v22

�
:

Now dividing the expression that satis�es the conservation of momentum into
that which satis�es the conservation of energy yields

v1 + v
0
1 = v02 + v2 or

v01 � v02 = � (v1 � v2) ;

which is the desired result.
The primary di¤erence in these two approaches is that the former yields the

solutions for v01 and v
0
2 prior to determining the relationship between the relative

velocities. In the second approach all we have learned is that one relationship.

5.4 Assume that the length of the string when it is hanging freely from the
edge of the cylinder (the equilibrium position) is `o: De�ne the angle between
the horizontal and a radial line to the point where the string breaks contact
with the cylinder to be �: This is the same as the angle that the string makes
with the vertical beyond the contact point. The length of the string beyond the
contact point is ` = `o � R�: The height below the contact point is ` cos� =
(`o �R�) cos�: Additionally the contact point is R sin� below the equilibrium
position at � = 0: De�ning U = 0 to correspond to the elevation of the mass at
equilibrium, the potential energy of the mass as a function of � is

U (�) = �mg (`o �R�) cos��mgR sin�� (�mg`o) :

When � << 1 we can expand this potential up to second order (ignore third
order and higher order terms) in � as

lim
�<<1

U (�) = �mg (`o �R�)
�
1� �2=2

�
�mgR�+mg`o;

lim
�<<1

U (�) = mg`o�
2=2:

The �rst derivative of this term shows that equilibrium occurs at � = 0 (which
we had already assumed) and the second derivative results in an e¤ective spring
constant of k = mg`o: The expansion to this order in � results in no change in
the usual pendulum equation.
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5.13 Given the potential

U (r) = Uo

�
r

R
+ �2

R

r

�
;

the equilibrium position, ro; is found from

dU

dr
= Uo

�
1

R
� �2 R

r2o

�
= 0;

r2o = �2R2 ! ro = �R:

Since r is positive de�nite, this is the only answer (�ro is not a solution). The
second derivative evaluated at equilibrium is

d2U

dr2
= 2�2Uo

R

r3o
= 2

Uo
�R2

:

For small displacements from equilibrium the potential is given by

U (r) = 2�Uo +
1

2
2
Uo
�R2

(r � �R)2 + � � �:

De�ning the displacement from equilibrium as x = r��R the potential reduces
to

U (r) = 2�Uo +
1

2
kx2 + � � �;

where k = 2Uo=
�
�R2

�
: Thus the angular frequency is ! =

p
k=m =

p
2Uo= (�mR2):

Virial Theorem for two interacting particles For two particles the
virial G is given by

G = �!p 1 � �!r 1 +�!p 2 � �!r 2:

Again we take the time derivative to �nd

dG

dt
=

��!p 1 � �!r 1 +�!p 1 �
��!r 1 +

��!p 2 � �!r 2 +�!p 2 �
��!r 2:

dG

dt
=

�!
F 1 � �!r 1 + 2T1 +

�!
F 2 � �!r 2 + 2T2

Now we assume that the only interaction is that between the two particles and
that this interaction conservative. Hence

�!
F 1 =

�!
F 12 = �r1U int (�!r 1 ��!r 2) and

�!
F 2 =

�!
F 21 = �

�!
F 12 = �r2U int (�!r 1 ��!r 2) :

We can now rewrite the time derivative of the virial as

dG

dt
=
�!
F 12 � (�!r 1 ��!r 2) + 2T1 + 2T2 = �r1U int (�!r 1 ��!r 2) � (�!r 1 ��!r 2) + 2T;
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where T = T1 + T2: De�ning the relative coordinate vector
�!r = �!r 1 ��!r 2 the

above expression becomes

dG

dt
= �rU int (�!r ) � �!r + 2T:

Again if the interaction is additionally central and of the form

U int = krn:

Again we have
dG

dt
= �nkrn + 2T = �nU int + 2T:

Taking the time average as we did before and noting that for bound orbits G is
bounded leads to

hT i = n

2



U int

�
:

This expression is identical to that found for a single particle, only now U int

is the potential associated with the interaction and T is the sum of the kinetic
energies.
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