Solutions Assignment 10 11.17%, 11.19, 11.27%* 11.32%**

*For 11.17 add a part (c) in which you find the normal coordinates. Show
that by using these coordinates the Lagrangian separates into two independent
Lagrangians. **For problem 11.27 assume that m; # ms. Additionally add a
part (d) in which you verify that the zero frequency normal coordinate is (or at
least proportional to) the CM coordinate and that the finite frequency normal
coordinate is (or at least proportional to) the relative coordinate. *** In 11.32
assume that all masses are equal, M = m.

11.17 (a) The Lagrangian for the double pendulum (small amplitude os-
cillations) is (see equations 11.39 and 11.40)

1 2 1 21 1
L=3 (m1 +ma) L§¢1+m2L1L2¢1¢2+§m2L§¢2—5 (m1 +m2) 9L1¢§—§m29L2¢§-

For this problem L1 = Ls = L and m; = 8mo = 8m, hence the Lagrangian
reduces to

9 52 AL T S 1
L= omL2g) +mL>6,6; + gmL>¢y — SmgLét — SmgLe;.

The two Lagrange equations of motion are

¢ 9&51 —+ %152 = —9%¢1 = —9wl¢,
Gy ;51 + éQ = _%% = —w2s,

where w? = g/L. The matrix equation that we must solve is

9w§—9w2 —w? ar| |0
—w? w? —w?| laz| ~ |0]"

The secular or characteristic equation is

20,2 .2
det [9w0_w29w 2 iuw2] = 8w* — 18wiw? + 9w? =

The solutions for the two normal mode frequencies are

2

3
Yo and w3 = ~w?

2 _
wi = 5o

The first normal mode is found from
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The solution is a; = ay/3. In this mode both pendulums oscillate in phase
with the upper pendulum having an amplitude that is 1/3 that of the lower
pendulum.

The second normal mode is found from

P WL

-9/2 =3/2| laa| _ |0
-3/2 —-1/2| |aa| — |0]°
The solution is a; = —as/3. In this mode both pendulums oscillate exactly out

of phase with the upper pendulum again having an amplitude that is 1/3 that
of the lower pendulum.

(b)
Given the initial conditions for this pendulum are ¢; = ¢, = o and ¢; =

¢o = 0, then the solutions are in the form

[i: Eiﬂ =4 B] coswit + Ag [_13} cos wat.

This results in gf)l (0) = q.bQ (0) = 0. The additional initial condition results in
61 (0)| 1 1] 1
Ptt| R R R

Solving for A; and A, we find

A1 +A4 = «
Al*AQ = Oé/?)

or

A1 =2a/3 and A; = /3.

The expression for the solution is
2
[zl Eg} = ?a B] cos/3g/4Lt + % { 13] cos/3g/2Lt.
) _

Since the ratio of the normal mode frequencies is v/2 which is irrational, the
motion is NOT periodic.

(c) The normal mode coordinates satisfy
1/3 1/3
AT

¢ = (& +&) /3 and ¢y =& —&,.

so that



In these coordinates the Lagrangian is given by

. . 2
<§1 + 52) ; ; ) . . N2
L = gmﬁf - mL2¥ (51 — 52) - %mLQ (gl - §2>

2
—gmgL@ - %mgL (51 - §2)27

4 .2 2 .2
—mL?¢ —mgL&] + —mL*¢, — mgL&s = L1 + Ls.

£ 3 3

This separates immediately and for a general solution we find
&, = Aj cos ( 3g/ALt — 51) , &5 = Ascos ( 3g/2Lt — 62) .
11.19(a) The x,y coordinates of the pendulum bob are
Tpob = T + Lsing, ypop = L cos .
The velocities are
Zbop = & + Lcos ¢, Y = —Lsin oo
Squaring the velocities and adding yields
) .2 - 52
Vpop =T + 2L cosppr + L=¢ .
For small amplitude oscillations this becomes
9 . )
Vi =T +2Lér + L*¢

The Lagrangian for this system is

.2

1 .2 - 1
L = 2((M+m)x +2ML¢x+ML2¢>—2kx2+Mchos¢
1 .2 - 52 1 5, 1 2
Y 3 (M +m)z +2ML¢x+ ML*¢ —ikx —§M9L¢.

The two equations of motion are

T (M—I—m)ﬁc'—f—ML(.b.:—kx.
¢ : Mi+ MLd=—Mgo.



(b) Assuming units in which that m = M = L = g = 1 and k = 2, the
matrix equation we must solve is

2 —2w? —w? ar| |0
—w? 1—w?| |ag| ~ |0]°
The secular or characteristic equation that results is

_ 9.2 2
det {2 j(; 1_ww2]=w4—4w2+220,

with solutions
w?=2-+v2 and wi=2+V2.

The solution for wy is found from
[t A | | I esvCle e | B

Beod arAl - (-

In this mode the cart and pendulum are in phase with the amplitude of the cart
smaller than the amplitude of the pendulum bob by a factor of /2.
The solution for wy is found from

-t | | R vl | P R

CReed 2R - v

In this mode the cart and pendulum are exactly out of phase with the amplitude
of the cart smaller than the amplitude of the pendulum bob by a factor of /2.

11.27 (a) The Lagrangian for this system is

1 .2 1 .2 1
L= Sty + Mty = §k (21 — 22).
The equations of motion are
ml'izl = —kiEl + kLUQ
mg":éQ = Ifl'l — kl’g,

The matrix equation that we must solve is

k —w?my —k ar| |0
—k E—w?ms| |aa| — (O]



The resulting secular equation is

k — w?my —k

det —k k — w?msg

= mymaw? — (my + mp) kw? =0,

with solutions
(m1 + MQ) ]f

wi=0 and w3 =
mimsa

=k/p,

where p is the reduced mass of this system.

(b) For the nonzero frequency the matrix equation becomes

k — k’M/mg —k ar| —m1/€/’rTL2 —k ar| 0
—k k — k:M/ml as o —k 7m2k/m1 as - (1
with solution

mia; = —Maoay — Mmiai + maas = 0.

In this mode as one mass moves relative to the center of mass the other moves
in the opposite direction with an amplitude that keeps the center of mass fixed
(or at least moving uniformly)

(c) At zero frequency the equation of motion reduces to no restoring force
which implies uniform translation. For the zero frequency we find

5=l

a; = as.

with solution

Both masses travel with equal amplitude (this keeps the center of mass moving
at a uniform velocity).

(d) The general solution is

17

1 (vt + x,)

x = A [n;z}cos(wlt—él)—i—{
—my

and the normal coordinates are
2N meo —1
<=l =e ] +a ]

To solve for the normal coordinates we invert the algebraic relations

ry = mey +§
Ty = —mi&y+&5.



The normal coordinate for w? = 0 is

mo T
- 1 2 mMoT2 mi1Tq
fl = = = X
ma + mq mo +my

where X is the center of mass of the two masses. The normal coordinate for
2 k :
W = k/pis

det El ﬂ
2 Xr1 — T2
= = =X M
52 mo + My mo + ™y /

where z is the relative coordinate.

11.32 (a) The Lagrangian for this system is
2 .2

1 . . -2 1 1
L= 5m (:Bl + z, +333> - §k (20 —21)° — 51@(333 — 25)?

The three equations of motion are

r1 : mxy = —k(z) — x0) = kw1 + ko
Ty mze=—k(zo—x1) — k(v2 — 23) = k11 — 2kTo + k3
r3 : maz = —k(x3 —x) = —kx3 + kxo.

The resulting matrix equation is

k — mw? —k 0 ai 0
—k 2k — mw? -k az| = |0
0 —k k—mw?| |as 0

The secular equation is

k — mw? —k 0
det —k 2k — mw? —k = —m3w® + 4km?w* — 3k%mw? =0,
0 —k k — mw?
w? (w4 —4(k/m)w?+3 (k/m)2> = w?(w?®—k/m) (w?—3k/m) =0.

Clearly one of the solutions occurs at w? = 0.

(b) The normal mode solution for w? = k/m is found from

0 -k O ay 0
-k k —k| |az| = |0
0 -k O as 0
The solutions are ay = 0, and a; = —ags. In this mode the center mass remains

stationary while the outside masses oscillate exactly out of phase with equal
amplitudes. Clearly this explains why w? = k/m.



The normal mode solution for w? = 3k/m is found from

-2k -k 0 ax 0
-k -k —k| |az| = |0
0 -k —2k| |as 0

The solutions are ay = 0, and a; = —ags. In this mode the center mass remains
stationary while the outside mass oscillate exactly out of phase with equal ampli-
tudes. Clearly this explains why w? = k/m. The solution is as = —2a; = —2as.

The two outer mass oscillate in phase with equal amplitudes while the cen-
ter mass oscillates exactly out of phase with twice the amplitude of the outer
masses. This is consistent with w? = 3k/m.

(¢) The normal mode solution for w? = 0 is found from

k —k 0 aq 0
-k 2k —Ek| |a2| = |0
0 —k k as 0

The solution is simply a; = a2 = a3. This is a uniform translation of the three
masses which explains why w? = 0.



