
Solutions Assignment 10 11.17*, 11.19, 11.27**, 11.32***
*For 11.17 add a part (c) in which you �nd the normal coordinates. Show

that by using these coordinates the Lagrangian separates into two independent
Lagrangians. **For problem 11.27 assume that m1 6= m2: Additionally add a
part (d) in which you verify that the zero frequency normal coordinate is (or at
least proportional to) the CM coordinate and that the �nite frequency normal
coordinate is (or at least proportional to) the relative coordinate. *** In 11.32
assume that all masses are equal, M = m.

11.17 (a) The Lagrangian for the double pendulum (small amplitude os-
cillations) is (see equations 11.39 and 11.40)
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For this problem L1 = L2 = L and m1 = 8m2 = 8m; hence the Lagrangian
reduces to
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The two Lagrange equations of motion are
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The solution is a1 = a2=3: In this mode both pendulums oscillate in phase
with the upper pendulum having an amplitude that is 1=3 that of the lower
pendulum.
The second normal mode is found from�
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The solution is a1 = �a2=3: In this mode both pendulums oscillate exactly out
of phase with the upper pendulum again having an amplitude that is 1=3 that
of the lower pendulum.
(b)
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Solving for A1 and A2 we �nd
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Since the ratio of the normal mode frequencies is
p
2 which is irrational, the

motion is NOT periodic.

(c) The normal mode coordinates satisfy
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In these coordinates the Lagrangian is given by
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This separates immediately and for a general solution we �nd
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11.19(a) The x; y coordinates of the pendulum bob are
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For small amplitude oscillations this becomes
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The two equations of motion are
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(b) Assuming units in which that m = M = L = g = 1 and k = 2; the
matrix equation we must solve is�
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The secular or characteristic equation that results is

det

�
2� 2!2 �!2
�!2 1� !2

�
= !4 � 4!2 + 2 = 0;

with solutions
!21 = 2�

p
2 and !22 = 2 +

p
2:

The solution for !1 is found from�
2� 2

�
2�

p
2
�

�
�
2�

p
2
�

�
�
2�

p
2
�

1�
�
2�

p
2
�� �a1

a2

�
=

�
�2 + 2

p
2 �2 +

p
2

�2 +
p
2 �1 +

p
2

� �
a1
a2

�
=

�
0
0

�
�p
2
�
2�

p
2
�
�2 +

p
2p

2
�
1�

p
2
�
�1 +

p
2

� �
a1
a2

�
=

�
0
0

�
!
p
2a1 = a2

In this mode the cart and pendulum are in phase with the amplitude of the cart
smaller than the amplitude of the pendulum bob by a factor of

p
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In this mode the cart and pendulum are exactly out of phase with the amplitude
of the cart smaller than the amplitude of the pendulum bob by a factor of

p
2:

11.27 (a) The Lagrangian for this system is
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The equations of motion are
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The resulting secular equation is
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In this mode as one mass moves relative to the center of mass the other moves
in the opposite direction with an amplitude that keeps the center of mass �xed
(or at least moving uniformly)

(c) At zero frequency the equation of motion reduces to no restoring force
which implies uniform translation. For the zero frequency we �nd�
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The normal coordinate for !21 = 0 is
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11.32 (a) The Lagrangian for this system is
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The three equations of motion are

x1 : m
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Clearly one of the solutions occurs at !2 = 0:

(b) The normal mode solution for !2 = k=m is found from24 0 �k 0
�k k �k
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The solutions are a2 = 0; and a1 = �a3: In this mode the center mass remains
stationary while the outside masses oscillate exactly out of phase with equal
amplitudes. Clearly this explains why !2 = k=m:
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The normal mode solution for !2 = 3k=m is found from24�2k �k 0
�k �k �k
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The solutions are a2 = 0; and a1 = �a3: In this mode the center mass remains
stationary while the outside mass oscillate exactly out of phase with equal ampli-
tudes. Clearly this explains why !2 = k=m: The solution is a2 = �2a1 = �2a3:
The two outer mass oscillate in phase with equal amplitudes while the cen-
ter mass oscillates exactly out of phase with twice the amplitude of the outer
masses. This is consistent with !2 = 3k=m:
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The solution is simply a1 = a2 = a3: This is a uniform translation of the three
masses which explains why !2 = 0:
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