Small Amplitude Fluctuations About Equilibrium
Problem 7.47 (b,c).

(b) The equation of motion for a system with a single generalized coordi-
nate was shown to be of the form
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Given a potential energy function (1-D) we have previously shown that the
points of equilibrium occur whenever
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This may occur for a set of g,’s for which dU/dq = 0, or whenever U is at a
maximum or a minimum. Given an equation of motion such as that in equation
(1), equilibrium implies that ¢ = ¢ = 0. Hence, consistent with our earlier
conclusions, equilibrium still requires dU/dq = 0.

(c) Now an important aspect of being at equilibrium is whether it is a
position of stable or unstable equilibrium. Earlier in the class we demonstrated
that a stable equilibrium occurs at a minimum in the potential energy function.
From basic calculus this requires
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where the second derivative is evaluated at a position of equilibrium, ¢ = g,.
For small amplitude fluctuations about equilibrium the potential energy can be
expanded in a Taylor’s series via

dU (go) 1d*U (go)

2d7(]2 (q— (Jo)2 . (2)

Since the first derivative vanishes this expansion reduces to
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This expression is analogous to that for a spring stretched (or compressed) from
it equilibrium position g, with an effective spring constant, k., being given by
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Clearly if the curvature of the potential energy function is positive then kc¢¢ > 0
and the equilibrium position at ¢, is stable.



Now consider the equation of motion, equation (1), for small amplitude
fluctuations from equilibrium. In that case ¢ = g, + €, where € is small. Since
Qo 1s a constant the equation of motion is linearized and reduces to
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To determine the quantity
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for small € we could simplify differentiate the Taylor’s expansion, equation (2),
above. However it is straightforward to note that a first order Taylor’s expansion
of dU/dq about g, yields
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Substituting this result into the equation of motion for small amplitude fluctu-
ations, equation (3), yields
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This equation is analogous to Hook’s law and harmonic oscillations occur as long
as the curvature of the potential energy function at the equilibrium position g,
is greater than zero, k.yy > 0. That is the forcing function on the right hand
side is negative corresponding to a restoring force.
The equation of motion has an additional property in that we can obtain the
frequency of small amplitude oscillations. From equation (4) these are given by
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where the effective mass is mess = A(go). So the analogy with Hook’s law
is complete. For small amplitude oscillations about equilibrium the angular
frequency is found from the effective spring constant divided by the effective
mass.

Problem 8.13(b,c)

(b) Consider two orbiting particles of reduced mass p which interact via
the potential energy function
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where 7 is the relative distance between them. The effective interaction for two
orbiting particles is
1 L?

Uepp (1) =U (r) + 2



Their equilibrium position for a circular orbit is found from

dUeff (7“0) L2
—— =k o T o — VY,
o T s 0 (5)
which has a solution
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(c) To determine frequency of small amplitude oscillations about r,, we
consider the equation of motion for the relative coordinate
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As we saw in the solution for 7.47, for small amplitude oscillations, r = r, + ¢,
this becomes
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The curvature or second derivative of the potential energy function at equilib-
rium is e )
Wegs (1) _ k3l
dr? urd

From equation (5) we can substitute for k& with the result.
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First we note that this expression is positive definite, hence we must have a stable

equilibrium with harmonic oscillations about equilibrium. Dividing equation (6)
by the reduced mass yields
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Hence the frequency of radial oscillations is
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Since the angular momentum for a circular orbit is L = ur2¢, we see that
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This means that the period of radial oscillations and the orbital period are
related via
Tang = 2T ad-

Hence the orbit is closed.



