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CHAPTER V
THREE-DIMENSIONAL POTENTIAL DISTRIBUTIONS

5.00. When Can a Set of Surfaces Be Equipotentials?—At first
glance, one might think that the class of three-dimensional potential
distributions in which there is symmetry about an axis could be obtained
by rotation of a section of a two-dimensional distribution provided that,
in so doing, the boundaries in the latter case generated the boundaries
in the former. This is not true in general. We shall now find the con-
dition that a set of nonintersecting surfaces in space must satisfy in order
to be a possible set of equipotential surfaces. Let the equation of the
surfaces be

F(z,y,2) =C 1)
Since one member of the family corresponds to each value of C, if it is
to be an equipotential, we must have one value of V for each value of C,

so that

vV =f(C)
must satisfy Laplace’s equation. Differentiating results in
v aC W _ e nf9CN | 41 nd°C
._é_a_:. = f,(C)ay etc., 53;—2' = f (C)(b’g) +f (C)axz, ete.

Substituting in Laplace’s equation gives

vy = 2V L BV L SV preyvey + £(C)viC = 0

ozt ' 9yt a9z
giving
vie __1C) _ .
wor = o ~ %9 @

The condition then that the surface F(z, ¥, z) = C can be an equipotential
is that V2C'/(VC)? can be a function of C only.
By integration of (2), we can now obtain the actual potential. Since
J"(€)/f'(€C) = dlln f'(C)}/dC, we have
J#(C) dC = — In[f'(C)] + 4’
or
£1(0) = Ae—le@ac
Integrating again gives
V =f(C) = Afe-fe@dcdC + B (3)
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The constants A and B can be determined by specifying the values of the
potential on any two of the surfaces given by (1).

5.01. Potentials for Confocal Conicoids.—As an application of :the
formula just derived, we shall now show that any one of the three sets of
nonintersecting confocal conicoids, given by the equation

x2 2 22

¥

a2+0+b2+o+c2+0‘1 M)
where ¢ > b > a and —¢? < 0 < «, is a possible set of equipotential
surfaces. To get a picture of these surfaces, let us vary 6 over the given
range. For the range —a% < 6 < o, every term in (1) is positive so
that it represents an ellipsoid. When 8 = «, we have a sphere of infinite
radius, and when @ = —a? the ellipsoid is flattened to an elliptical disk
iying in the yz-plane. When 6 passes from —a? 4+ & to —a? — 5, we
pass from the region of the yz-plane inside the disk to that outside. The
latter is one limiting case of the hyperboloid of one sheet which (1) repre-
sents when —b? < 8 < —a% When 6 = —b? the hyperboloid of one
sheet is flattened into that region of the zz-plane which includes the
z-axis and lies between the hyperbolas cutting the z-axis at

z = t(c* — bH)h
When 6§ passes from —b% 4 § to —b% — §, we pass to the region of the
zz-plane on the other side of these hyperbolas which is the limiting case
in which the hyperboloid of two sheets, represented by (1) when
—¢? < @ < —Db? is flattened into the zz-plane. When 6 = —¢2, we have
the other limiting case in which the two sheets of this hyperboloid coalesce
in the zy-plane. Thus one curve of each set passes through each noint
in space; and, since it can be shown that the three sets are orthogonal,
we can apply to them the theory developed in 3.03 for orthogonal curvi-
linear coordinates which leads to ellipsoidal harmonics. The latter are
too complicated to be treated here, although later we shall treat the special
cases of spheroidal harmonics.
To return to our problem: Let

M _ xZ + y2 + z2
n = (a’ + 0)1. (b2 + o)n (62 + 0)»
and
1 1 1
N_a2+6+b2+0+02+0
With this notation, (1) becomes M; = 1, and differentiating this we have
2z a9 a6 2z
————a’2+0—M2a—0 or %—M——Ka?__i_o),etc.

so that

2 2 2
(ve)? = (%) + (gg) + (Z—Z) =35 < (L.1)
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Differentiating again gives

320 2 _ 2z 9 _ 2z 1 2r oM a6

o>  Maa®+6) Mia®+ 6)20r a®+ 0 M3 (a® + 6)° 9z
2 422 472 8x2M;

+

S0 MiGET6E M F o0 T (@ + oy o

Adding similar expressions for ¥ and z gives

vig — 2N _ My | SMuMy _ 2N
M, M3 M3 M,
Substituting in 5.00 (2), we have

V29 2N M, N 1 1

~e: I, 4~z © 0= {a2+0+b2 +c2+e) 2)
This proves that such a set of equipotentials is possible. We now find
the potential by 5.00 (3) to be

V = Af"le + 00 + 0)(c* + 6)1H do + B 3)

This im an elliptic integral given by Peirce 542 to 549 with z = —4.
The constants 4 and B may be taken real or imaginary, whichever makes
V real.

5.02. Charged Conducting Ellipsoid.—If we choose ¥V =0 when
6 = =, 5.01 (3) takes the form

V = A la + 00" + 0)(c* + 01 do ®
LS
If we choose V = V, when 6 = 0 then, substituting in (1) gives
—4 = Vo} ["l(@* + O)®* + 0)(c* + o)1 H do| ™ @)

The field at infinity due to this ellipsoid, if its total charge is @, will be
Q/(4rer?). We see from 5.01 (1) that as 6 — o, 22 + y2 + 22 = r2— 0,
and so 860/dr — 2r giving

£14 aves A , 24 Q
i T A M R = @

Hence

The capacitance of the ellipsoid is, from (2),

1
0=L = A _od [+ 00 + 0@ + o1}
Vo Vo
= 4me(a® — b [(a® — bD)Ha? — c?)i, sin! (1 — ca?)}] (4)

The surface density is given by
vV
o= —e(VV)gmo = —e(%]Vﬂ)

8=0
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From (1), (8V/00)¢mo = A(abc)~! and, from 5.01 (1.1), |V8| = 2M

so that o
Q [ y? 22
"=4mbc<;;+"b?+c—4 (5)

6.03. Elliptic and Circular Disks.—The capacitance of an elliptic
disk, obtained by putting @ = 0 in 5.02 (4), is still an elliptic integral.
To get the surface density, we write 5.02 (5) in the form
Q + azyz zzz) ] ‘

4rbe a2 ct

Now let ¢ — 0, and the terms mvolvmg y and z can be neglected. Since
both z and a are zero, the first term must be evaluated from 5.01 (1)
where 6 is put equal to zero, giving

Q 2 22\ 3
“ﬂm(“%‘@) ™)

The capacitance of a circular disk is obtained by putting @ = 0 and
b = ¢ in 5.02 (4), giving by Pc 114 or Dw 186.11
-1
tan—1-- ) =8b (2)
0

© -1
C = 8re[f 642 + 6)_1d0:l = 8re 2
0 b b
Letting p? = y* 4 22and b = cin (1), the surface density on each side is

Q
b — ot @)
The potential due to such a disk given by 5.02 (1) witha = 0Qand b = cis
_2Vf1 _,0t 2V, . b
ol ) - 2
Putting in the value of 6 obtained by letting r? = 22 + y2 4 22, @ = 0,
and b = ¢ in 5.01 (1) gives

V= 2Vo tan—1 (2512{ — b2+ [(,.2 — b2)2 + 4b2x2]§}—§) (4)

64 ”

g =

This problem can also be solved by oblate spheroidal harmonics (5.271).
5.04. Method of Images. Conducting Planes.—An application of
the test of 5.00 shows that in no case involving more than one point
charge can we obtain the potential from the analogous two-dimensional
case. Nevertheless, two of the methods used in such cases can also be
applied to three-dimensional problems. One of these is the method of
images. Any case in which the equation of a closed conducting surface
under the influence of a point charge can be expressed in the form

o—q+2

sm1
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Differentiating again gives

90 2 _ 2z 0 2 L[ 2z 2Maa_a]

0z Miy(a®+6) M.(a®+ 020z af+ 6 M3 (a® + 0) oz
2 4z 4z 8zt M,

+

= Mz(dz + 6) - Mi(a® + 6)3 - Mi(a® + 0)3 @ ¥ 6):M¥ etc.

Adding similar expressions for ¥ and z gives
2N 8M; , 8M.M; 2N
20 = T 2% =
Ve M, M3 + M3 M,
Substituting in 5.00 (2), we have
V¢ 2N M. N _1 1 1 1) 9
~ve: M, 4 2 % q’(a)‘2(a2+a+b2+o+c2+e 2)
This proves that such a set of equipotentials is possible. We now find
the potential by 5.00 (3) to be

V = Afla* + )0 + O)(c* + 0)]4do + B 3)

This :m an elliptic integral given by Peirce 542 to 549 with z = —4.
The constants A and B may be taken real or imaginary, whichever makes
V real.

5.02. Charged Conducting Ellipsoid.—If we choose V =0 when
6 = o, 5.01 (3) takes the form

V= ALl + 0+ O + o df (1)
If we choose V = V, when = 0 then, substituting in (1) gives
—4 = VO;_[;”[(az + 0)(b% + 6)(c? + 0)]* dof"‘ 2)

The field at infinity due to this ellipsoid, if its total charge is Q, will be
Q/(4rer?). We see from 5.01 (1) that as 6 — o, 22 + y2 + 22 =r2— 0,
and so0 80/9r — 2r giving

1% aVas A _24 . Q 3
-5777'—;& a_0§;=—7'—32’r—7'—2_ 471"67'2 ()

Hence

The capacitance of the ellipsoid is, from (2),

« -1
C = Q = Bred _ 81re{f [(a® + 6)(B% + 6)(c® + 0)] 3 do}
Vo Vo 0
= 4me(a® — b [(a® — b*)H(a? — ¢}, sin~! (1 — c?a?)}] €))

The surface density is given by
v
g = —E(VV)a-o = —e(%lVBI)

8=0
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From (1), (9V/86)p=0 = A(abc)~! and, from 5.01 (1.1), |V6] = 2M -t

so that 5
Q (2 Y2 2
¢ = 4mbc(ai + 5t (5)

6.03. Elliptic and Circular Disks.—The capacitance of an elliptic
disk, obtained by putting ¢ = 0 in 5.02 (4), is still an elliptic integral.
To get the surface density, we write 5.02 (5) in the form

Q (=2 n a%y? " azzz)—i

Vs 5 (e B iy R B

Now let a — 0, and the terms involving y and z can be neglected. Since
both z and a are zero, the first term must be evaluated from 5.01 1)
where 0 is put equal to zero, giving

- _v_zy?
=\l T cz) 1)

The capacitance of a circular disk is obtained by putting @ = 0 and
b = cin 5.02 (4), giving by Pc 114 or Dw 186.11

© —1 2 05 o\ —1
C = 8ne 642 4+ 6)-do = 8re Etan_l— =8b (2
0 blo

Letting p? = y* + 22and b = cin (1), the surface density on each side is

_ Q
7= I = )
The potential due to such a disk given by 5.02 (1) witha = Oand b = cis

= %(—,—}r - tan‘l%}> = g:_ﬁ] tan“l—g—}
Putting in the value of § obtained by letting 72 = z2 4 ¥+ 2% a =0,
and b = cin 5.01 (1) gives
V= 2—}:" tan™! (28{r? — b2 4 [(r? — b2)% 4 4b2?t}—H) 4)

This problem can also be solved by oblate spheroidal harmonics (5.271).

5.04. Method of Images. Conducting Planes.—An application of
the test of 5.00 shows that in no case involving more than one point
charge can we obtain the potential from the analogous two-dimensional
case. Nevertheless, two of the methods used in such cases can also be
applied to three-dimensional problems. One of these is the method of
images. Any case in which the equation of a closed conducting surface
under the influence of a point charge can be expressed in the form

0=14 D
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