Physics 214 UCSD/225a UCSB

Lecture 7
Finish Chapter 2 of H&M
* November revolution, charm and beauty
CP symmetry and violation
» Simple example
 Unitarity matrix for leptons and quarks
Beginning of Neutrino Physics



Missed a week due to fire in SD.
Let's skip some stuff!

« Magnetic moment of proton etc.

 November revolution
— Charm
— Beauty
— OZIl suppression

* | encourage you to read up on this in
chapter 2 of H&M



CP Symmetry
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-> This requires CP because weak interactions maximally violate parity.

-> We will ignore subtleties in the difference between lepton and quark sector.
=\We’ll get back to this next quarter.

=>All we care for now is that there’s a 3x3 unitary matrix of couplings involved.
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Breaking CP in Standard Model

* Where does the CP violating phase come from?

— 3x3 unitary matrix => 3 angles + 6 phases
« 2N? parameters, N? constraints from unitarity

— 6 spinors with arbitrary phase convention
« Only relative phase matters because only |M|? is physical.
=0nly 5 phases can be used to define a convention.

=> One phase left in 3x3 matrix that has physical
consequences.
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X,y,Z are euler angles. c=cos, s=sin.

Note: sin(z) = 0 <=> NO CP violating phase left !!!



CP violation summary

« CP violation is easy to add in field theory:
— Complex coupling in Lagrangian
— Interference of channels with:

 Different CP violating phase
 Different CP conserving phase

« Standard Model implements this via:

— CP violating phase in charged current coupling across
3 families

— CP conserving phase via:
« Dynamics, e.g. Breit Wigner resonance lineshape
« Flavor Mixing & oscillation in neutrino or quark sector

Let’s look at neutrino sector in some detail !



Aside:

* |If you want to know more about the details,
please check out:

Lecture 9/20/2000 and further reading for it

* It constructs all possible conventions for the
CKM matrix in probably more detail than
you ever want to know.




Mixing in Standard Model

* Weak eigenstates not equal mass
eigenstates.

— Mass eigenstates responsible for propagation in
time.

— Weak eigenstates responsible for production
and/or decay.

=(Qscillation between weak eigenstates as a
function of time.

=>Discuss this in detail for Neutrino sector now.



Neutrino mixing

At the W vertex an electron-neutrino is created
together with a positron.

That electron-neutrino is a superposition of mass
eigenstates: N
v ()= Y ULlv,(D)
i=1

The time evolution of the mass eigenstate can be
described either in its rest-frame or in the labframe:

V(1)) =e ™" |v,(0)) = e 5P| v (0))

For interference among the mass eigenstates to be
possible, they all have to have the same E because
experimentally we average over time.



Time average demands E=E



Oscillation Amplitude
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Next we taylor expand p; using: 2

N G .
pi=v i E

+ ...



Oscillation Probability
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In homework, you do this for the general case of N flavors.
Here we do it for the simpler case of 2 flavors only.



Simple math aside

1-e'f

= (1 — [cosx + isin x])(l - [cosx —isIn x])

=[1-cos x]2 +sin” x

=2(1-cosx)

We’'ll need this is a second.



2 flavor oscillation probabillity
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This is a bit simplistic, as it ignores matter effects.
We’'ll discuss those on Wednesday.
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Discussion of Oscillation Equation

2 2
Prob(v, —v,) =sin’ 26?[sin2 (my 4212 )L

« Depends on difference in mass squared.

— No mixing if masses are identical
— Insensitive to mass scale
— Insensitive to mass hierarchy

« Depends on sin?(26)

— Need large angle to see large effect

« Depends on L/4E

— Exp. with unfortunate L/E won’t see any effect.
— Exp. with variable L/E can measure both angle and mass squared difference.
— Exp. with Am? L/4E >>1 and some energy spread average over sin? -> 1/2



Experimental situation

« Sources of electron neutrinos
— Sun
— Reactors

* Sources of muon neutrinos
— From charged pion beams
— From charged pion decay in atmosphere



Atmospheric neutrinos

Expect v, anti-v, in equal numbers
Expect v, half as many as v, + anti-v

Can change L as a function of Zenith angle. (L ~
15km to L ~ 13,000km)

v, Oscillation to v,

=> See excess of v, vs zenith angle
v, Oscillation to v,

=> See excess of v, vs zenith angle
v, Oscillation to v_

=> Deficit of v, vs zenith angle

v, Oscillation to v,
=> Deficit of v, Vs zenith angle



Super Kamiokande Results
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x10°.

* MINOS Best Fit
— MINOS 90% C.L.
........... MINOS 68% C.L.

Interpreted as

Vi ->V_

— K2K 90% C.L.
— SK 80% C.L.
— SK (L/E) 90% C.L.




Neutrinos from the Sun

 Many mechanisms, all leading to electron
neutrinos with varying energies.

— Expect: 0.5 sin%(20) of solar model flux
convolved with energy dependent efficiency.

* Neutrino energy too low to produce either
muons or taus.

— Electron disappearance experiments only in all
but one experiment (SNO).



Solar Model is Quite Complex
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Flux (em~2 s-1)

Neutrino Energies are quite small
Very Challenging Experimentally for many decades
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SNO allowed CC and NC, and was thus sensitive to all neutrino
flavors => measures solar flux and electron neutrino flux.
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Reactor Experiments
All except KamLAND had L that is too small!
=> Only KamLAND saw oscillations !
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Interpretation

* Atmospheric must be v, -> v,
— Though tau appearance has never been seen.
— However, electron appearance is ruled out.

— The state that is far in mass from the other two
must have very little electron neutrino content!



(Mass)?
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Things we have not discussed yet.

Majorana Neutrinos -> see homework
“Size of CP violation” -> see homework

Getting well collimated E via off-axis -> see
homework

Reactor neutrinos and sintheta13 -> see
homework

Resolving the mass hierarchy -> Wednesday.









