Physics 214 UCSD/225a UCSB

Lecture 10

* Halzen & Martin Chapter 4

— Electron-muon scattering

— Cross section definition

— Decay rate definition

— treatment of identical particles => symmetrizing
— crossing



Electrodynamics of Spinless
particles

* We replace p* with p* + eA*in classical EM for

a particle of charge -e moving in an EM
potential A"

* In QM, this translates into: 0" —id" + eA"

 And thus to the modified Klein Gordon
Equation:

(0“0, + m*)p = -V
V =—ie(d"A, + A"d,)—e A’

V here is the potential energy of the perturbation.



Two-by-two process
Overview

Start with general discussion of how to relate
number of scatters in AB -> CD scattering to
“beam & target independent” cross section in
terms of W;, .

Calculate W; for electron-muon scattering.
Calculate cross section from that

Show relationship between cross section and
“invariant amplitude” (or “Matrix Element”).



Reminder from last lecture

Plane wave solutions are:

¢(t,;) = Ne "+

4-vector current for the plane wave solutions we find:

p=2EINP

I LJ* =2 p" N |
j=2p|NI2J P




Why pxE ?

pd3x = constant under lorentz transformations

However, d°x gets lorentz contracted.
Therefore, p must transform time-like, i.e. dilate.

d3x%d3xw/1—v2
p— p/1-1




Cross Section for AB -> CD

o target
» Basic ideas: _
scatter
beam E X
\
# of scatters = (flux of beam) x (# of particles in target) x o
Wfi

Cross section = ¢ = =—— (number of final states)

(initial flux)

W = rate per unit time and volume

“Cross section” is independent of
characteristics of beam and target !!!



Two-Two process AB -> CD

* Normalize plane wave in constant volume

— This is obviously not covariant, so the volume
normalization better cancel out before we’re done!

fpdV=2E:N=L

g WV

 # of particles per volume = 2E/V =n
» # of particles A crossing area per time = v, n,
* FIux(AB) = v, N, (2E5/V) = v, (2E,/V) (2ER/V)



Aside on covariant flux

Flux = v, (2E,/V) (2E5/V)

Now let target (i.e. B) move collinear with beam (i.e.
A): Flux = (v, = vg) (2EA/V) (2ER/V)
Now take v=p/E: Flux = (E, pa + Eg pg) 4/V?

Now a little relativistic algebra:

(pip?) = mim? = (E,E, - pipy) —mim

(EAEB)2 =(p2 + mz)A(p2 + mz)

Pa =—Pp

B

Putting the pieces together and adding a little algebra:

(pip?) —mimi = (p,Ey+ pyE,)

4 2
Flux = F\/(pj‘pﬁ) —-m.m,

Obviously covariant!



Number of final states/particle

« QM restricts the number of final states that a
single particle in a box of volume V can have:

Number of final states Vdp3

2E particles ] (2 ﬂ;)3 o¥ D

I'll probably let you show this explicitly in homework.



Putting the pieces together

VVfi

Cross section = ¢ = =——— (number of final states)
(initial flux)

Wi Vdpé Vdpg

0:

va (QEV) (2Eg/V) (2m)2E. (27m)°2E,

Next we calculate W,



Electron Muon Scattering

* Use what we did on Monday
— Electron scattering in EM field

» With the field being the one generated by the
muon as source.

— Use covariant form of maxwell’'s equation in
Lorentz Gauge to get V, the perturbation potential.

* Plugitinto T;



Electron Muon scattering

> Av = Ju ) Maxwell Equation

Note: [ P el® = -g2 eiox

Tty = ~eN, Ny (py + py)'el7o o

A“ 1 JM \z q

=_? (2)
T f Ja)_l T gt «— Note the symmetry: (1) <-> (2)
fi q (2)

Tfi =—IN,N;N:N, (275)45(4)(171) + Pe—Pa—Pp)M

—iM = (ie(p, + p:)") lq“ (ie(pp + pg)")

S

Note the structure: Vertex x propagator x Vertex



Reminder: T; -> W;

2 2

o _ [T

W, =lim-"- =
> tV

Last time we didn’t work in a covariant fashion. This time
around, we want to do our integrations across both time and
space, i.e. W is a rate per unit time and volume.

Tfi =—IN,N;N:N, (275)45(4)(191) + Pe— Py —Pp)M

As last time, we argue that one 3-function remains after ||
while the other gives us a tV to cancel the tV in the denominator.



Putting it all together for W;

2
1 7
N=— W, =L
WV 17
—i(2m)*
Tfi V2 6(4)(190 + P =Py —Ps)M

W, = (2m)" 6" (pp + Pc -

Py — Pg)
V4 . . ‘M‘z




Putting it all together for o

Wi Vdpé Vdpg
Va (QEV) (2Eg/V) (2m)2E. (27)°2E,

0:

do, V2 (2]_[)4 6(4)(pD+pC_pA_pB)‘M‘2 Vzdpgdp;)

" 4v,EE, Ve 2n)°4E E,

1 5(4)(171) T+ Pc—Pa— Pg) ‘M‘Z dpfdpf)

do = :
647 v, EE, E E,




It Is customery to re-express
\Mf

do dQ

F = flux factor: P 4\/ (pyp") —m2m?

dQ = Lorentz invariant phase space:

d0=— Y% 41 —p —p )dpfdpf)
167> pore T N EE,




In the center-of-mass frame:

F = 4pi\/(EA T EB)2 = 4pi\/;

L P uo

dO =
Q 4% 44/s

You get to show this as homework !



Electron-electron scattering

« With identical particles in the final state, we obviously
need to allow for two contributions to M.
— Option 1:
« C attaches at vertex with A
« D attaches at vertex with B

— Option 2:
e C attaches at vertex with B
« D attaches at vertex with A

* As we can'’t distinguish C and D,the amplitudes add
before M is squared.

2 Pat pe) Py + Pp), L Pt Pp) (pg + pc),

M = 2 2
(pD _pB) (pc _pB)



Electron-positron and crossing

_g? (P + 1) (=Dy - Db, N (Py—Pp)'(=pp + Pe),

M = 2 2
((_pD) - (_pB)) (pc — (_pD))




Electron-positron and crossing

Electron - electron
V- ez((PA +P) (s + Do)y (Pat Pp) (s + pc)u)
- — - 2
(pD _pB) (pc _pB)

Electron - positron
_ez(m +P)" Py =Pl (Pa=Py)" Py + pc>u)

M = 2 2
((_pD) - (_pB)) (pc — (_pD))

Only difference is: pp <> -pg






E-mu vs e-e vs e-ebar scattering
Electron - muon
M = —62((19‘4 + pc)“(pB -;pD)M)
(pD _pB)

Electron - electron
V- 62((pA +P) (s + Do)y (Pat Pp) (s + pc)u)
- — - 2
(pD _pB) (pc _pB)

Electron - positron
M = —62((pA + pC)M(_pB _pD)M + (pA _PB)“(—,DD + pC)M)

((=pp) = (=pp))° (Pe = (=pp))’









