
Physics 214 UCSD/225a UCSB

Lecture 10

• Halzen & Martin Chapter 4
–    Electron-muon scattering

–    Cross section definition

–    Decay rate definition

–    treatment of identical particles => symmetrizing

–    crossing



Electrodynamics of Spinless
particles

• We replace pµ with pµ + eAµ in classical EM for
a particle of charge -e moving in an EM
potential Aµ

• In QM, this translates into:

• And thus to the modified Klein Gordon
Equation:
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V here is the potential energy of the perturbation.



Two-by-two process
Overview

• Start with general discussion of how to relate
number of scatters in AB -> CD scattering to
“beam & target independent” cross section in
terms of Wfi  .

• Calculate Wfi for electron-muon scattering.

• Calculate cross section from that

• Show relationship between cross section and
“invariant amplitude” (or “Matrix Element”).



Reminder from last lecture

4-vector current for the plane wave solutions we find:
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Plane wave solutions are:



Why   ρ∝E   ?

ρd3x = constant under lorentz transformations

However, d3x gets lorentz contracted.
Therefore, ρ must transform time-like, i.e. dilate.
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Cross Section for AB -> CD

• Basic ideas:

Cross section =  σ = 
Wfi

(initial flux)
(number of final states)

# of scatters = (flux of beam) x (# of particles in target) x σ

“Cross section” is independent of 
characteristics of beam and target !!!

beam

target

scatter

Wfi = rate per unit time and volume



Two-Two process AB -> CD

• Normalize plane wave in constant volume
– This is obviously not covariant, so the volume

normalization better cancel out before we’re done!

• # of particles per volume = 2E/V = n
• # of particles A crossing area per time = vA nA

• Flux(AB) = vA nA (2EB/V) = vA (2EA/V) (2EB/V)
! 
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Aside on covariant flux
• Flux = vA (2EA/V) (2EB/V)
• Now let target (i.e. B) move collinear with beam (i.e.

A):  Flux = (vA - vB) (2EA/V) (2EB/V)
• Now take v=p/E: Flux = (EA pA + EB pB) 4/V2

• Now a little relativistic algebra:
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Putting the pieces together and adding a little algebra:

Obviously covariant!



Number of final states/particle

• QM restricts the number of final states that a
single particle in a box of volume V can have:
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I’ll probably let you show this explicitly in homework.



Putting the pieces together

Cross section =  σ = 
Wfi

(initial flux)
(number of final states)

σ = 
Wfi
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Next we calculate Wfi 



Electron Muon Scattering

• Use what we did on Monday
– Electron scattering in EM field

• With the field being the one generated by the
muon as source.
– Use covariant form of maxwell’s equation in

Lorentz Gauge to get V, the perturbation potential.

• Plug it into Tfi



Electron Muon scattering

 2 Aµ = Jµ(2)  Maxwell Equation
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Note: 2 eiqx = -q2 eiqx

Note the symmetry: (1) <-> (2)

Note the structure: Vertex x propagator x Vertex



Reminder: Tfi -> Wfi
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Last time we didn’t work in a covariant fashion. This time
around, we want to do our integrations across both time and
space, i.e. W is a rate per unit time and volume.
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As last time, we argue that one δ-function remains after ||2 
while the other gives us a tV to cancel the tV in the denominator.



Putting it all together for Wfi
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Putting it all together for σ

σ = 
Wfi
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It is customery to re-express
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F = flux factor:

dQ = Lorentz invariant phase space:! 
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In the center-of-mass frame:
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You get to show this as homework !



Electron-electron scattering

• With identical particles in the final state, we obviously
need to allow for two contributions to M.
– Option 1:

• C attaches at vertex with A

• D attaches at vertex with B

– Option 2:
• C attaches at vertex with B

• D attaches at vertex with A

• As we can’t distinguish C and D,the amplitudes add
before M is squared.
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Electron-positron and crossing
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Electron-positron and crossing
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Electron - electron

Electron - positron

Only difference is: pD ↔ -pB 





E-mu vs e-e vs e-ebar scattering
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Electron - electron
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Electron - positron

Electron - muon
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