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Chapter 1

Introduction to Dynamics

1.1 Introduction and Review

Dynamics is the science of how things move. A complete solution to the motion of a
system means that we know the coordinates of all its constituent particles as functions
of time. For a single point particle moving in three-dimensional space, this means
we want to know its position vector r(t) as a function of time. If there are many
particles, the motion is described by a set of functions 7,(¢), where i labels which
particle we are talking about. So generally speaking, solving for the motion means
being able to predict where a particle will be at any given instant of time. Of course,
knowing the function 7,(¢) means we can take its derivative and obtain the velocity
v,(t) = dr;/dt at any time as well.

The complete motion for a system is not given to us outright, but rather is encoded
in a set of differential equations, called the equations of motion. An example of an
equation of motion is

d*x
Mg = —Mg (1.1)
with the solution
z(t) = xo + vot — gt° (1.2)

where xy and vy are constants. This describes the vertical motion of a particle of
mass m moving near the earth’s surface.

In this class, we shall discuss a general framework by which the equations of mo-
tion may be obtained, and methods for solving them. That “general framework” is
Lagrangian Dynamics, which itself is really nothing more than an elegant restatement
of Isaac Newton’s Laws of Motion.



1.1.1 Newton’s Laws

Aristotle held that objects move because they are somehow impelled to seek out their
natural state. Thus, a rock falls because rocks belong on the earth, and flames rise
because fire belongs in the heavens. To paraphrase Wolfgang Pauli, such notions are
so vague as to be “not even wrong.” It was only with the publication of Newton’s
Principia in 1687 that a theory of motion which had detailed predictive power was
developed.

Newton’s three Laws of Motion may be stated as follows:

[. A body remains in uniform motion unless acted on by a force.
II. Force equals rate of change of momentum: F = dp/dt.

III. Any two bodies exert equal and opposite forces on each other.

Newton’s First Law states that a particle will move in a straight line at constant
(possibly zero) velocity if it is subjected to no forces. Now this cannot be true in
general, for suppose we encounter such a “free” particle and that indeed it is in
uniform motion, so that r(t) = ro + vot. Now =(¢) is measured in some coordinate
system, and if instead we choose to measure 7(t) in a different coordinate system
whose origin R moves according to the function R(t), then in this new “frame of
reference” the position of our particle will be

r(t) = r(t) — R(t)
=71y + vot — R(t) . (1.3)

If the acceleration d?R/dt? is nonzero, then merely by shifting our frame of reference
we have apparently falsified Newton’s First Law — a free particle does not move in
uniform rectilinear motion when viewed from an accelerating frame of reference. Thus,
together with Newton’s Laws comes an assumption about the existence of frames of
reference — called inertial frames — in which Newton’s Laws hold. A transformation
from one frame K to another frame X’ which moves at constant velocity V' relative to
F is called a Galilean transformation. The equations of motion of classical mechanics
are invariant (do not change) under Galilean transformations.

At first, the issue of inertial and noninertial frames is confusing. Rather than
grapple with this, we will try to build some intuition by solving mechanics prob-
lems assuming we are in an inertial frame. The earth’s surface, where most physics
experiments are done, is not an inertial frame, due to the centripetal accelerations
associated with the earth’s rotation about its own axis and its orbit around the sun.
In this case, not only is our coordinate system’s origin — somewhere in a laboratory
on the surface of the earth — accelerating, but the coordinate axes themselves are
rotating with respect to an inertial frame. The rotation of the earth leads to ficti-
tious “forces” such as the Coriolis force, which have large-scale consequences. For



example, hurricanes, when viewed from above, rotate counterclockwise in the north-
ern hemisphere and clockwise in the southern hemisphere. Later on in the course we
will devote ourselves to a detailed study of motion in accelerated coordinate systems.

Newton’s “quantity of motion” is the momentum p, defined as the product p = mwv
of a particle’s mass m (how much stuff there is) and its velocity (how fast it is moving).
In order to convert the Second Law into a meaningful equation, we must know how
the force F' depends on the coordinates (or possibly velocities) themselves. This is
known as a force law. Examples of force laws include:

Constant force: F=—-mg
Hooke’s Law: F=—kx
Gravitation: F =—-GMm#/r?
v
Lorentz force: F=9qE+q—xB
c

Fluid friction (v small): F=—-bv.

Note that for an object whose mass does not change we can write the Second Law
in the familiar form F' = ma, where a = dv/dt = d* /dt? is the acceleration. Most
of our initial efforts will lie in using Newton’s Second Law to solve for the motion of
a variety of systems.

The Third Law is valid only for the extremely important case of central forces
which we will discuss in great detail later on. Newtonian gravity — the force which
makes the planets orbit the sun — is a central force. One consequence of the Third
Law is that in free space two isolated particles will accelerate in such a way that

F; = —F, and hence the accelerations are parallel to each other, with
a m
Sz (1.4)
a9 ma

where the minus sign is used here to emphasize that the accelerations are in opposite
directions. We can also conclude that the total momentum P = p; + p- is a constant,
a result known as the conservation of momentum.

1.1.2 Aside : Inertial vs. Gravitational Mass

In addition to postulating the Laws of Motion, Newton also deduced the gravitational
force law, which says that the force F,; exerted by a particle ¢ by another particle j



is
T, —7T;
F.. = —Gm-mj J

1, K3

—_— 1.5
where G, the Cavendish constant (first measured by Henry Cavendish in 1798), takes
the value

G = (6.6726 & 0.0008) x 107N - m? /kg* . (1.6)

Notice Newton’s Third Law in action: Fj; + F;; = 0. Now a very important and
special feature of this “inverse square law” force is that a spherically symmetric mass
distribution has the same force on an external body as it would if all its mass were
concentrated at its center. Thus, for a particle of mass m near the surface of the
earth, we can take m; =m and m; = M, with r, — r; ~ R.7 and obtain

F = —mgr = —mg (1.7)

where 7 is a radial unit vector pointing from the earth’s center and g = GM,/R? ~
9.8 m/s? is the acceleration due to gravity at the earth’s surface. Newton’s Second
Law now says that a = —g, i.e. objects accelerate as they fall to earth. However,
it is not a priori clear why the inertial mass which enters into the definition of
momentum should be the same as the gravitational mass which enters into the force
law. Suppose, for instance, that the gravitational mass took a different value, m’. In
this case, Newton’s Second Law would predict

m/

a=-—_g (1.8)

and unless the ratio m’/m were the same number for all objects, then bodies would
fall with different accelerations. The experimental fact that bodies in a vacuum fall
to earth at the same rate demonstrates the equivalence of inertial and gravitational
mass, i.e. m' = m.

1.2 Examples of Motion in One Dimension

To gain some experience with solving equations of motion in a physical setting, we
consider some physically relevant examples of one-dimensional motion.

1.2.1 Uniform Force

With F' = —myg, appropriate for a particle falling under the influence of a uniform
gravitational field, we have m d%/dt* = —mg, or & = —g. Notation:
dx d* 5o dr
rT=—, r=—-—, r=—-—, etc. 1.9
t 12 dt’ ( )



With v = &, we solve dv/dt = —

/dv = /ds (—9) (1.10)
v(0) 0
v(t) —v(0) = —gt . (1.11)
Note that there is a constant of integration, v(0), which enters our solution.
We are now in position to solve dx/dt = v:
/d:z:—/dsv (1.12)
z(0)
/ — gs) (1.13)
= 2(0) +v(0)t — 39t* . (1.14)
Note that a second constant of integration, :(0), has appeared.
1.2.2 Uniform force with linear frictional damping
In this case,
d
d: = —mg —yv (1.15)
which may be rewritten
d
N (1.16)
v+ mg/y m
dIn(v+mg/y) = —(v/m)dt (1.17)
Integrating then gives
v(t) +mg/ 7)
In({ —F——"F) =-—t/m 1.18
(S ) = 19
o(t) = -9 4 (U(O) + @) e~ M/m | (1.19)
Y v
Note that the solution to the first order ODE mo = —mg — v entails one constant

of integration, v(0).



One can further integrate to obtain the motion

2(t) = 2(0) + = <U(o> + @> (1—et/my - 29y (1.20)
Y Y Y
The solution to the second order ODE mi = —mg — ~v2 thus entails two constants of

integration: v(0) and x(0). Notice that as ¢ goes to infinity the velocity tends towards
the asymptotic value v = —v_, where v, = mg/vy. This is known as the terminal
velocity. Indeed, solving the equation v = 0 gives v = —wv_ . The initial velocity is
effectively “forgotten” on a time scale 7 = m/~.

oo”

Electrons moving in solids under the influence of an electric field also achieve a
terminal velocity. In this case the force is not F' = —mg but rather F' = —eF, where
—e is the electron charge (e > 0) and E is the electric field. The terminal velocity is
then obtained from

v, =€eE/y=erE/m . (1.21)

The current density is a product:

current density = (number density) x (charge) x (velocity)

= E. (1.22)

The ratio j/FE is called the conductivity of the metal, 0. According to our the-
ory, ¢ = ne?t/m. This is one of the most famous equations of solid state physics!
The dissipation is caused by electrons scattering off impurities and lattice vibrations
(“phonons”). In high purity copper at low temperatures (T'<4K), the scattering
time 7 is about a nanosecond (7 &~ 107%s).

1.2.3 Uniform force with quadratic frictional damping

At higher velocities, the frictional damping is proportional to the square of the ve-
locity. The frictional force is then F} = —cv?sgn (v), where sgn (v) is the sign of
v: sgn(v) = +1if v > 0 and sgn(v) = —1 if v < 0. (Note one can also write
sgn (v) = v/|v| where |v| is the absolute value.) Why all this trouble with sgn (v)?
Because it is important that the frictional force dissipate energy, and therefore that
F; be oppositely directed with respect to the velocity v. We will assume that v < 0
always, hence F; = +cv?.

Notice that there is a terminal velocity, since setting © = —g + (¢/m)v? = 0 gives



v = v, where v, = \/mg/c. One can write the equation of motion as

dv g
i UT(U2 —v2) (1.23)

1 1[ 1 1 ] (1.2

V2 — 02 200 [V — VU U+ VU

and using

we obtain
dv 1 dv 1 dv

V2 — 02 200U —Uso 2V U+ Vs

== dt . (1.25)

Assuming v(0) = 0, we integrate to obtain

L (“‘” - “(t)) _ 9 (1.26)

2050 Voo + (1) vZ

which may be massaged to give the final result
v(t) = —v tanh(gt/vs) - (1.27)
Recall that the hyperbolic tangent function tanh(x) is given by

sinh(z) e" —e™

cosh(z) er+e

tanh(z) = (1.28)

Again, as t — 0o one has v(t) — —vu, .. V(00) = —Vno.

Advanced Digression: To gain an understanding of the constant ¢, consider a flat
surface of area S moving through a fluid at velocity v (v > 0). During a time At,
all the fluid molecules inside the volume AV = S - vAt will have executed an elastic
collision with the moving surface. Since the surface is assumed to be much more
massive than each fluid molecule, the center of mass frame for the surface-molecule
collision is essentially the frame of the surface itself. If a molecule moves with velocity
u is the laboratory frame, it moves with velocity u — v in the center of mass (CM)
frame, and since the collision is elastic, its final CM frame velocity is reversed, to
v — u. Thus, in the laboratory frame the molecule’s velocity has become 2v — v and
it has suffered a change in velocity of Au = 2(v — u). The total momentum change
is obtained by multiplying Au by the total mass M = pAV, where p is the mass
density of the fluid. But then the total momentum imparted to the fluid is

AP =2(v—u) - pSvAt (1.29)



and the force on the fluid is

F—%—Zggv(v—u) : (1.30)
Now it is appropriate to average this expression over the microscopic distribution of
molecular velocities u, and since on average (u) = 0, we obtain the result (F') = 25gv?,
where (---) denotes a microscopic average over the molecular velocities in the fluid.
(There is a subtlety here concerning the effect of fluid molecules striking the surface
from either side — you should satisfy yourself that this derivation is sensible!) Newton’s
Third Law then states that the frictional force imparted to the moving surface by the
fluid is F; = —(F) = —cv?, where ¢ = 2Sp. In fact, our derivation is too crude to
properly obtain the numerical prefactors, and it is better to write ¢ = poS, where
is a dimensionless constant which depends on the shape of the moving object.

1.2.4 Crossed Electric and Magnetic Fields

Consider now a three-dimensional example of a particle of charge ¢ moving in mutually
perpendicular E and B fields. We'll throw in gravity for good measure. We take
E = Fx, B = Bz, and g = —gz. The equation of motion is Newton’s 2nd Law
again:

mv=mg+qE+ 17 x B . (1.31)

The RHS (right hand side) of this equation is a vector sum of the forces due to gravity
plus the Lorentz force of a moving particle in an electromagnetic field. In component
notation, we have

B
mi = qE+ Ly (1.32)
C
B
mij= -1 ¢ (1.33)
&
mzZ=—mg . (1.34)

The equations for coordinates x and y are coupled, while that for z is independent
and may be immediately solved to yield

2(t) = 2(t) + 2(0) t — gt . (1.35)
The remaining equations may be written in terms of the velocities v, =  and v, = ¥:

0, = w,(v

y, T Up) (1.36)
v, = —Ww, U, (1.37)



where w, = ¢B/mc is the cyclotron frequency and u, = cE/B is the drift speed for
the particle. As we shall see, these are the equations for a harmonic oscillator. The
solution is

0, (t) = v,(0) cos(wt) + (v,(0) 4 u,) sin(w,t) (1.38)
v, (t) = —uy, + (v,(0) + uy) cos(w.t) — v, (0) sin(w,t) . (1.39)
Integrating again, the full motion is given by:
x(t) = x(0) + A sind + A sin(w.t — 9) (1.40)
y(r) =y(0) —uyt — Acosd + A cos(w,t —9) , (1.41)
where
I . 2 ~1 (9(0) + up
— /32 — U A )
A o #2(0) + (y(0) +up)” , 0 =tan ( #{0) ) : (1.42)

Thus, in the full solution of the motion there are siz constants of integration:
z(0) , y(0), 2(0), A, 6, 2(0) . (1.43)

Of course instead of A and ¢ one may choose as constants of integration #(0) and

4(0).

1.3 Pause for Reflection

In mechanical systems, for each coordinate, or “degree of freedom,” there exists a
corresponding second order ODE. The full solution of the motion of the system entails
two constants of integration for each degree of freedom.

1.4 Phase Space Dynamics

Dynamics is the study of motion through phase space. For our purposes, we will take
@ = (p1,...,py) to be an N-tuple, i.e. a point in RY. The equation of motion is
then

d
pm o(t) =V (p,t) . (1.44)
Note that any N** order ODE, of the general form
dN dx dVN "l
—=Hlz,—,...,—— 1.45
dtN (x it dtNl) ’ (1.45)

10



may be represented by the first order system ¢ = V(¢). To see this, define ¢, =
d¥ 'z /dt, with k =1,..., N. Thus, for j < N we have ¢, = ¢, ,,, and ¢y = f. In
other words,

P Vi)
¥1 (%)
d : :
t PN-1 YN
O Fep,...,05)

Mechanical systems are dynamical systems. We have for each ‘generalized coordi-
nate’ g; an equation of motion of the form

q.U:Qa<q1""7qK;Q17"'>QK)7 (147)

where K is the number of degrees of freedom the system possesses. If there are no
constraints, K = N -d, where NV is the number of particles and d is the dimension of
space. If we then identify

Po =0 + Porr =4o (1.48)

and
Vo’ - q.a' Y V0-+K = Qo’({ql/}’ {qy}) Y (]‘49)
for o = 1,..., K, then we arrive at the general form of eqn. 1.44 for a dynamical

system, with N = 2K.

In autonomous cases, where V(p,t) = V() alone, V(¢) is called a vector field
over the phase space. A solution ¢(t) to the dynamical system of eqn. 1.44 is called
an integral curve. It entails N constants of integration, i.e. ¢(0). The set of all
integral curves is called the phase flow of the dynamical system.

1.4.1 Existence/Uniqueness/Extension Theorems

Theorem : Given ¢ = V() and ¢(0), if each V() is a smooth vector field over
some open set D € R, then for ©(0) € D the initial value problem has a solution
on some finite time interval (—7,+7) and the solution is unique. Furthermore, the
solution has a unique extension forward or backward in time, either indefinitely or
until () reaches the boundary of D.

Corollary : Different trajectories never intersect!

11



1.4.2 Linear Differential Equations

A homogeneous linear N** order ODE,
dNx dN "z dx

may be written in matrix form, as

M
o 0 1 0 - 0\ [
d 0 0 1 - 0
L I I I . 2l (1.51)
dt : : : : : :
PN —C —C —C rr —Cn_y PN
Thus,
o= Mo, (1.52)

and if the coefficients ¢, are time-independent, i.e. the ODE is autonomous, the
solution is obtained by exponentiating the constant matrix @):

p(t) = exp(Mt) ¢(0) ; (1.53)

the exponential of a matrix may be given meaning by its Taylor series expansion. If
the ODE is not autonomous, then M = M(t) is time-dependent, and the solution is
given by the ‘path-ordered exponential’,

t

p(t) =Pexp { /dt’M(t’)} »(0) , (1.54)

0

As defined, the equation ¢ = V' (¢) is autonomous, since g, depends only on ¢ and on
no other time variable. However, by extending the phase space from M to R x M,
which is of dimension (N + 1), one can describe arbitrary time-dependent ODEs.

12



Chapter 2

Systems of Particles

2.1 Work-Energy Theorem

Consider a system of many particles, with positions 7; and velocities 7,. The kinetic
energy of this system is
T=Y T,=) imi}. (2.1)
i i

Now let’s consider how the kinetic energy of the system changes in time. Assuming
each m,; is time-independent, we have

1,

= r,T . (2.2)
Here, we've used the relation
d dA
— (A =24 —. 2.3
ai 4 i (23)

We now invoke Newton’s 2nd Law, m,#; = F,, to write eqn. 2.2 as T, = F, - ;. We
integrate this equation from time ¢, to tg:

[3:]
T - T™ = / at L
1 K dt
ta
[3:1
- /thi =y WA (2.4)
tA ¢

where W™ is the total work done on particle i during its motion from state A to
state B, Clearly the total kinetic energy is 7' = ), 7; and the total work done on all

13



particles is W®*=® = %" WP Eqn. 2.4 is known as the work-energy theorem. It
says that

In the evolution of a mechanical system, the change in total kinetic energy is
equal to the total work done: T® — TW = W H=8),

2.2 Conservative and Nonconservative Forces

For the sake of simplicity, consider a single particle with kinetic energy T =
%mi‘Q. The work done on the particle during its mechanical evolution is

1551
W8 = /th ‘v, (2.5)
ta

where v = 7. This is the most general expression for the work done. If the force
F' depends only on the particle’s position r, we may write dr = v dt, and then

B
W®=—») :/d'r -F(r) . (2.6)
A
Consider now the force

where K, are constants. Let’s evaluate the work done along each of the two
paths in fig. 2.1:

rB YB
WO =K, [dey, + K, [dyz, = Ky, (x, — 2,) + Ky 2, (yy — ) (2.8)
TA YA
YB B
W =K, [dyx, + K| |drvy, = K|y, (xB_xA)+K2$A (yB_yA) : (2'9>
YA TA

Note that in general W® £ W Thus, if we start at point A, the kinetic
energy at point B will depend on the path taken, since the work done is path-
dependent.

The difference between the work done along the two paths is

W — W = (KQ - Kl) (’:EB - ’:CA) (yB - yA) . (2'10)

14



1 A
it (W) >
C/ path I
I I
:L.A ;I:B

Figure 2.1: Two paths joining points A and B.

Thus, we see that if K; = K,, the work is the same for the two paths. In fact,
it K| = K,, the work would be path-independent, and would depend only on
the endpoints. This is true for any path, and not just piecewise linear paths of
the type depicted in fig. 2.1. The reason for this is Stokes’ theorem:

]{dﬂF:/dSﬁ-VxF. (2.11)

oc c

Here, C is a connected region in three-dimensional space, dC is mathematical
notation for the boundary of C, which is a closed path!, dS is the scalar differ-
ential area element, n is the unit normal to that differential area element, and
V x F is the curl of F":

T y 2
VxF=det|a &
F, F, F,
0F, OF, OF, O0F, OF, OF,
== - 2.12
(82 3y)w+<8x 32) +(8y 8x) (2.12)

For the force under consideration, F(r) = K,y & + K,z y, the curl is
VxF=(K,—K))z, (2.13)

'If C is multiply connected, then OC is a set of closed paths. For example, if C is an annulus, OC

is two circles, corresponding to the inner and outer boundaries of the annulus.

15



which is a constant. The RHS of eqn. 2.11 is then simply proportional to

the area enclosed by C. When we compute the work difference in eqn. 2.10,

we evaluate the integral §d€ - F along the path 7' o v, which is to say path
C

I followed by the inverse of path II. In this case, n = 2z and the integral of
n - V x F over the rectangle C is given by the RHS of eqn. 2.10.

When V x F = 0 everywhere in space, we can always write FF = —VU,
where U(r) is the potential energy. Such forces are called conservative forces
because the total energy of the system, £ =T + U, is then conserved during its
motion. We can see this by evaluating the work done,

rB

| :/dr - F(r)
Ta
T
=— /dr - VU
TaA
=U(r,)—Ul(ry) . (2.14)
The work-energy theorem then gives
T® —T® = (r,)—U(r,) , (2.15)
which says
E® =T® £ U(r,) =T® +U(r,) = E™ . (2.16)

Thus, the total energy £ =T + U is conserved.

2.2.1 Example : Integrating F = —-VU

If V x F =0, we can compute U(r) by integrating, viz.

U(r) = U(0) — / dr' - F(r') . (2.17)

0

The integral does not depend on the path chosen connecting 0 and r. For
example, we can take

(=,0,0) (%,9,0) (z,y,2)
U(x,y,2z) =U(0,0,0) — /da:'Fz(x',0,0) — /dy’Fy(:E,y',O) — /dz’FZ(:U,y,z').
(0,0,0) (2,0,0) (2,9,0)

(2.18)
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The constant U(0,0,0) is arbitrary and impossible to determine from F' alone.
As an example, consider the force
F(r)=—kyz —kry—4b2* 2 (2.19)

where k and b are constants. We have

(VxF) = <%I;Z - %) =0 (2.20)
OF, OF.\ _
(VxF)y—<aZ — a%)_0 (2.21)
OF, OF
F) = (=Y _—"2)= 2.22
(V> F), (8:13 83/) 0, (2:22)

so V x F' = (0 and F must be expressible as F' = —VU. Integrating using eqn.
2.18, we have

(2,0,0) (z,y,0) (2,9,2)
U(z,y,z) =U(0,0,0) + /dx’k: -0 + /dy’ kry + /dz’ bz (2.23)
(0,0,0) (z,0,0) (2,9,0)
=U(0,0,0) + kxy + bz"* . (2.24)

Another approach is to integrate the partial differential equation VU = —F..
This is in fact three equations, and we shall need all of them to obtain the
correct answer. We start with the -component,

ou
— =ky . 2.25
5 = Y (2.25)
Integrating, we obtain
Ulz,y,z) = kay + f(y,2) , (2.26)

where f(y, z) is at this point an arbitrary function of y and z. The important
thing is that it has no z-dependence, so df/0x = 0. Next, we have

oU
re kr = Ul(x,y,z)=kry+g(x, z). (2.27)
Y
Finally, the z-component integrates to yield
5 = bz = U(z,y,z) =bz" + h(z,y) . (2.28)
z

17



We now equate the first two expressions:
Koy + f(y.2) = kay + g(x, 2) . (2.29)

Subtracting kxy from each side, we obtain the equation f(y, z) = g(z, z). Since
the LHS is independent of x and the RHS is independent of y, we must have

fly;2) = g(x, 2) = q(2) , (2.30)
where ¢(z) is some unknown function of z. But now we invoke the final equation,
to obtain
bz* + h(z,y) = kay + q(2) . (2.31)
The only possible solution is h(z,y) = C' + kxy and ¢q(z) = C + bz*, where C is
a constant. Therefore,

Ulx,y,2) = C + kay + bz"* . (2.32)

Note that it would be wvery wrong to integrate OU/Jx = ky and obtain
U(z,y,z) = kxy + C', where C' is a constant. As we’ve seen, the ‘constant
of integration’ we obtain upon integrating this first order PDE is in fact a func-
tion of y and z. The fact that f(y,z) carries no explicit x dependence means
that 0f /0z = 0, so by construction U = kzy + f(y, z) is a solution to the PDE
oU/0x = ky, for any arbitrary function f(y, z).

2.3 Conservative Forces in Many Particle Sys-
tems

T =Y img? (2.33)
U:ZV(riHZv(m—m). (2.34)

i<j
Here, V(r) is the external (or one-body) potential, and v(r — ') is the interpar-

ticle potential, which we assume to be central, depending only on the distance
between any pair of particles. The equations of motion are

mi ’I’Z _ E(ext) + E(im) , (235)
with
av 7
E(ext) afnr ) (236)

F = Z v |r’ 0 Z F<mt> (2.37)
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Here, F;;“t) is the force exerted on particle ¢ by particle j:

: ov(|r; — rj)) T, —T;
poeo = ST T e )y (2.38)
K a'l”i |Ti ]| ( ! J )
Note that F; o) — —F}; ) " otherwise known as Newton’s Third Law. It is con-
venient to abbrewate 7‘ = r;, —r;, in which case we may write the interparticle

force as F;"' = =7, v (7}']')-

2.4 Linear and Angular Momentum

Consider now the total momentum of the system, P = ). p,. Its rate of change
is
F(int)+F int) -0

- Ya-rEe SR <R 2

i#j
since the sum over all internal forces cancels as a result of Newton’s Third Law.
We write

P=>) m# =MR (2.40)
M = Z m,; (total mass) (2.41)
R = 2T (center-of-mass) . (2.42)

i mi
Next, consider the total angular momentum,

L:Zrixpi:Zmirixf'i . (2.43)

The rate of change of L is then

C;_’;“ - Z {mf; x 7, +mr, x #;}

= E r; XF(E"t)—l— E r; ><Fi<;““)

i#j
r; ><F<int> 0
_Zr xFe’“)+ Zr —r F;(;“”
i#]
= Nt(gf) ) (2.44)
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Finally, it is useful to establish the result

T:%Zmﬁ?:%MR2+%Zmi(7"i—R)27 (2.45)

which says that the kinetic energy may be written as a sum of two terms, those
being the kinetic energy of the center-of-mass motion, and the kinetic energy of
the particles relative to the center-of-mass.

Recall the “work-energy theorem” for conservative systems,

final final final
0= /dE: /dT+/dU
initial initial initial

_ B _ ) Z/dri . F, (2.46)
AT =T® —TW = Z/dri - F, . (2.47)

Note that for continuous systems, we replace
S moo(r) — [abplr)o(r) (2.43)

where p(r) is the mass density, and ¢(r) is any function.

2.5 Scaling of Solutions for Homogeneous Po-
tentials

2.5.1 Euler’s Theorem for Homogeneous Functions

In certain cases of interest, the potential is a homogeneous function of the co-
ordinates. This means

UAry, ..., Ary) =X U(ry,...,Ty) . (2.49)

Here, k is the degree of homogeneity of U. Familiar examples include gravity,

m;m;
U(Tl,...,TN):—GZﬁ 3 k:—]_, (250)
i J

i<j
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and the harmonic oscillator,

U(ql,...,qn)zéz Vol Qo 3 k=42. (2.51)

The sum of two homogeneous functions is itself homogeneous only if the compo-
nent functions themselves are of the same degree of homogeneity. Homogeneous
functions obey a special result known as Euler’s Theorem, which we now prove.

Suppose a multivariable function H(x,,...,z,) is homogeneous:
HAzy, ..., z,) = NH(z,,...,2,) . (2.52)
Then
d H(Azy, ... ix — (2.53)
dx| T Oz

2.5.2 Scaled Equations of Motion

Now suppose the we rescale distances and times, defining

ro=ar t=p3t. (2.54)
Then
dri _adr Pri _ o & (2.55)
g dt atr (% dt?
The force F; is given by
0
E:_ari U(Th 7TN)
0 - .
= o @ Vo7
= Oékil ~i . (256)

Thus, Newton’s 2nd Law says

(6% d2fz k—1 1
If we choose (3 such that
We now demand .
o 1
- = ak_l = 6 —_ al_Qk , (258)
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then the equation of motion is invariant under the rescaling transformation!
This means that if r(¢) is a solution to the equations of motion, then so is
a’r(aék—l t). This gives us an entire one-parameter family of solutions, for all

real positive a.

If 7(¢) is periodic with period T, the r,(¢; ) is periodic with period 7" =

1
o' 728 T Thus,

(3)-()"

(2.59)

Here, « = L’/L is the ratio of length scales. Velocities, energies and angular

momenta scale accordingly:

H_L N LT
ST o L/ T ¢

M L2 E' L'\? //T"\?
E| = i ) ok
A=m = 5=(2)/(7) =

MIL? \L'|  [(L\* /T 1
Ll = = = | — — = (1“‘2’“)
2 =7 I <L)/T “

As examples, consider:

(i) Harmonic Oscillator : Here k = 2 and therefore
06 (1) — ¢, (t; ) = g, (1) .
Thus, rescaling lengths alone gives another solution.
(ii) Kepler Problem : This is gravity, for which & = —1. Thus,

r(t) — r(t;a) = ar(of3/2 t) .

(7) - (%)

also known as Kepler’s Third Law.

Thus, 7% o< t2, i.e.

(2.60)
(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

2.6 Appendix I : Curvilinear Orthogonal Coor-

dinates
The standard cartesian coordinates are {z,...,z,}, where d is the dimension
of space. Consider a different set of coordinates, {q,,...,q,}, which are related
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to the original coordinates x, via the d equations

qN = qu(xb e 7xd) . (266)

In general these are nonlinear equationa.

Let é) = 2; be the Cartesian set of orthonormal unit vectors, and define €,
to be the unit vector perpendicular to the surface dg, = 0. A differential change
in position can now be described in both coordinate systems:

ds = Ze dx, = Zeu h,(q)dq, , (2.67)

where each h,(g) is an as yet unknown function of all the components g,. Find-
ing the coefficient of dg, then gives

ox; & d
Z Z el (2.68)

Oqu
where L 9
Ly
ui@) 7 () 4 (2.69)
The dot product of unit vectors in the new coordinate system is then
Ox; Ox;
e, €, = (MM") = el 2.70
en &= (M), Z 7 99, 9g, (270
The condition that the new basis be orthonormal is then
Ox; Ox;
L =02 (q) O - 2.71
aq# aqy u(q) 12 ( )
=1
This gives us the relation
(2.72)

Note that
Z h’(q) (dg,,)? (2.73)

For general coordinate systems, Wthh are not necessarily orthogonal, we have

Z gW dqu dq, , (2.74)

=1

where g,,(¢) is a real, symmetric, positive definite matrix called the metric
tensor.
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2.6.1 Example : Spherical Coordinates

Consider spherical coordinates (p, 0, ¢):
x=psinfcos¢ , y=psinfsing , z=pcosh. (2.75)
It is now a simple matter to derive the results
hf, =1, hg=p" , hi=p’sin’f. (2.76)

Thus, A R
ds=pdp+p@df+ psinfpdep . (2.77)

2.6.2 Vector Calculus : Grad, Div, Curl

Here we restrict our attention to d = 3. The gradient VU of a function U(q) is
defined by

oU oU ou
dU = —d —d d
aql 41 + 8(]2 qs + a qs
= VU -ds . (2.78)

Thus,

7 (2.79)

For the divergence, we use the divergence theorem, and we appeal to fig. 2.2:

AVV-A= [dSh-A, (2.80)

0 o2

where {2 is a region of three-dimensional space and 0f2 is its closed two-dimensional
boundary. The LHS of this equation is

The RHS is
q,+dg, qy+da, q,+dag
RHS = A, hy hy . dgy dgs + Ay hy hy ] dqy dgg + Az hy hy . dq, dg,
1 2 3
= [i (A1 h, hs) + i (Az hy hs) + i (A3 hy hz)] dq, dg, dgs (2.82)
oq g2 g3

24



Figure 2.2: Volume element {2 for computing divergences.

We therefore conclude

1 0 0 0
V- A= P {a—ql(A1 hy hsy) + a—q2(A2 hy hy) + a_qg(A?’ hihy)| |- (2.83)

To obtain the curl V x A, we use Stokes’ theorem again,

/dS'fz'VxA:j{dE-A, (2.84)
ox

X

where Y is a two-dimensional region of space and 90X is its one-dimensional
boundary. Now consider a differential surface element satisfying dg; = 0, i.e. a
rectangle of side lengths h, dg, and hydg;. The LHS of the above equation is

LHS = e, -V x A (hydqy) (hydgs) . (2.85)
The RHS is
QQ+dQQ Q3+dq3
RHS = A; h, dgs — Ay hy dq,
) a3
0 0
= |—(Ashs) — —(A, h,) |dg, dqg. . 2.
[an( 3 3) 8q3( 2 2)} 4o Qg3 ( 86)
Therefore . O(hs As) Oy Ay)
V x A), = 5758 22). 2.87
( )1 ho hs ( 3Q2 a% ( )
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This is one component of the full result
hié, hyé, hség
o ol &)
det ar kP P . (2.88)
hiAy hy Ay hgAs

V x A=
% Iy by iy

The Laplacian of a scalar function U is given by

VU=V -VU
L [0 (o) (oY D (1))
hihg hs | Oq hy O dga \ ha 0go dg3 \ hs Ogs '
(2.89)
2.6.3 Common Curvilinear Orthogonal Systems
Rectangular Coordinates
In rectangular coordinates (x,y, z), we have
h,=h,=h,=1. (2.90)
Then the gradient is
oUu oUu oUu
_ Y p0U SO0 2.91
vU max+yay+zaz (2.91)
The divergence is
0A, 0A, O0A
V- -A= ° Y £ 2.92
ox + dy + 0z ( )
The curl is
0A., 0A 0A, 0A 0A, O0A
V x A= =Yg - “ g — 4 )z . 2.93
% (83/ 8z)x+<8z 8$>y+(8x 8y)z (2.93)
The Laplacian is
0?U  9*U  0*U
U = : 2.94
VU =G0+ 57t o (2.94)
Cylindrical Coordinates
In cylindrical coordinates (p, ¢, z), we have
p=& cosd+ Y sine & =pcosd— o sing dp = ¢pdo (2.95)
b= —& sing+ g cos Qzﬁsingﬂrgf;cosgb dqﬁz—ﬁdqﬁ. (2.96)

26



The metric is given in terms of

h,=1 , hy=p , h,=1.

z

Then the gradient is

OU @ OoU _oU
VU_pa_p_’_;a_Qﬁ—i_zE'

The divergence is

_10(pA,) 104,  0A,
v A_p dp p 0¢ 0z
The curl is
C(10A. DAL . (04, DA\, | [10(pAy)
VXA_(p 96 8z)p+( 2 8p)¢ (p dp

The Laplacian is

Spherical Coordinates

In spherical coordinates (r, 6, ¢), we have

T = &sinfcos¢ + ysinfsing + z2sinb
0 = @ cos 0 cos ¢ + y cos fsin ¢ — 2 cos b

q,’;:—:i:sinqﬁ—i-:l)(:OS(b,

for which o o R X
rx0=¢ , Oxop=7r , Pdpxr=20.
The inverse is
& = rsinfcosd + 0 coslcosd — psind
'g:fsin&singb—kécos&singb—k(f&cosgb
2 =17cosf —Osind .

The differential relations are
df = 60 df + sinf ¢ do
d0 = —7 df + cos 0 ¢ do
d(Z) = —(sin@f“ + Coseé) do
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The metric is given in terms of

h,=1 , hy=7r , hy=rsind. (2.112)
Then the gradient is

OU 0 U ¢ U

The divergence is

1 9(r*A,) 1 O(sinf Ap) 1 04,
A= — . 2.114
v r? r + rsin @ ol rsinf 0¢ ( )

The curl is

1 d(sinfAy)  04g\ . 1 ( 1 04, 9(rds)\,4
VXA_rsiHQ( or 8¢>r+;(sin9 0p or o
1 (0(rdg) 0A\ ;
+ ( 5 20 )cb : (2.115)

The Laplacian is

o L 00U L0 1 _&U
VU=35" %) " rsma e\ "5 ) - (219

72 sin%0 W
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Chapter 3

Conservative Mechanical Systems
in One Dimension

3.1 Description as a Dynamical System

For one-dimensional mechanical systems, Newton’s second law reads

mi = F(x) . (3.1)
A system is conservative if the force is derivable from a potential: F' = —dU/dx.
The total energy,
E=T+U=imi*+U(z), (3.2)
is then conserved. This may be verified explicitly:
A& d ,
Tl [%me + U(x)}
- [mi‘ + U’(x)} i=0. (3.3)

Conservation of energy allows us to reduce the equation of motion from
second order to first order:

dx 2
EiJE<EU(x)) ) (3.4)

Note that the constant E is a constant of integration. The + sign above depends
on the direction of motion. Points x(F) which satisfy

E=U(x) = z(E)=UYE), (3.5)
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where U~ is the inverse function, are called turning points. When the total
energy is F, the motion of the system is bounded by the turning points, and
confined to the region(s) U(z) < E. We can integrate eqn. 3.4 to obtain

t(x) — t(z,) (3.6)

\F/W

This is to be inverted to obtain the function z(¢). Note that there are now two
constants of integration, £’ and x,. Since

E = Ey = smug + U(zy) , (3.7)

we could also consider x, and v, as our constants of integration, writing E in
terms of x, and v,. Thus, there are two independent constants of integration.

For motion confined between two turning points =, (E), the period of the

motion is given by
x4 (E)

T(E) =\2m / Ed_—‘”/U(xl). (3.8)
z_(E)

3.1.1 Example : Harmonic Oscillator

In the case of the harmonic oscillator, we have

dt [ m
x:w%SmG. (3.10)
k
dt = ,/% do . (3.11)

0(t) = 0, + wt , (3.12)

where w = /k/m is the harmonic oscillator frequency. Thus, the complete
motion of the system is given by

x(t) = \/? sin(wt + 6,) - (3.13)

Note the two constants of integration, £ and 6.

Let us substitute

We then find

with solution
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3.2 Omne-Dimensional Mechanics as a Dynami-
cal System

Rather than writing the equation of motion as a single second order ODE, we
can instead write it as two coupled first order ODEs, viz.

dx

- 14
dv 1

— =—F . 1
=~ Fla) (3.15)

This may be written in matrix-vector form, as

i (x) - (% ;<x>) | (3.16)

This is an example of a dynamical system, described by the general form

de

— =V 3.17

% _vig), (317)
where ¢ = (¢y,...,¢y) is an N-dimensional vector in phase space. For the

model of eqn. 3.16, we evidently have N = 2. The object V' (¢) is called a vector
field. Tt is itself a vector, existing at every point in phase space, R". Each of
the components of V() is a function (in general) of all the components of ¢:

V.=V ex)  G=1,...,N). (3.18)

Solutions to the equation ¢ = V' (¢) are called integral curves. Each such
integral curve ¢(t) is uniquely determined by N constants of integration, which
may be taken to be the initial value ¢(0). The collection of all integral curves
is known as the phase portrait of the dynamical system.

In plotting the phase portrait of a dynamical system, we need to first solve
for its motion, starting from arbitrary initial conditions. In general this is a
difficult problem, which can only be treated numerically. But for conservative
mechanical systems in d = 1, it is a trivial matter! The reason is that energy
conservation completely determines the phase portraits. The velocity becomes
a unique double-valued function of position, v(z) = +4/2(E — U(z)). The
phase curves are thus curves of constant energy.
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Figure 3.1: A potential U(z) and the corresponding phase portraits. Separatrices are
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3.2.1 Sketching Phase Curves

To plot the phase curves,

(i) Sketch the potential U(z).
(ii) Below this plot, sketch v(z; E) = +,/2(E — U(x)).
(iii) When E lies at a local extremum of U(x), the system is at a fized point.

(a) For E slightly above E,,,, the phase curves are ellipses.
(b) For E slightly below E,.., the phase curves are (locally) hyperbolae.

(c) For B = E,,, the phase curve is called a separatriz.
(iv) When E > U(o0) or E > U(—0o0), the motion is unbounded.

(v) Draw arrows along the phase curves: to the right for v > 0 and left for v < 0.

The period of the orbit T'(F) has a simple geometric interpretation. The
area A in phase space enclosed by a bounded phase curve is

x4 (E)

A(E) :fvdx: JE /dxm (3.19)
E z_(E)

Thus, the period is proportional to the rate of change of A(F) with E:

0A
T=myz. (3.20)
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3.3 Fixed Points and their Vicinity
A fixed point (z*,v*) of the dynamics satisfies U’'(z*) = 0 and v* = 0. Taylor’s
theorem then allows us to expand U(z) in the vicinity of z*:

Ulz) =U(z")+U'(z*) (x — x*) +%U”([B*) (x—2*)*+ %U”’(:v*) (x—2*)3+... . (3.21)

Since U'(z*) = 0 the linear term in dz = x — x* vanishes. If Jz is sufficiently
small, we can ignore the cubic, quartic, and higher order terms, leaving us with

U(dz) = Uy + $k(dz)? (3.22)

where U, = U(z*) and k = U”(2*) > 0. The solutions to the motion in this
potential are:

U'(z*) >0 : 0x(t) = 0z, cos(wt) + % sin(wt) (3.23)
U'(x*) <0 : dx(t) = dz, cosh(yt) + 57& sinh(vt) , (3.24)

where w = y/k/m for k > 0 and v = y/—k/m for k < 0. The energy is

For a separatrix, we have £ = U, and U”(z*) < 0. From the equation
for the energy, we obtain dv, = £7vydz,. Let’s take dv, = —vydx,, so that the
initial velocity is directed toward the unstable fixed point (UFP). Le. the initial

velocity is negative if we are to the right of the UFP (dx, > 0) and positive if
we are to the left of the UFP (dx, < 0). The motion of the system is then

dx(t) = dxy exp(—t) . (3.26)
The particle gets closer and closer to the unstable fixed point at dx = 0, but

it takes an infinite amount of time to actually get there. Put another way, the
time it takes to get from 0z to a closer point dx < dx, is

t=~""In (%) . (3.27)

This diverges logarithmically as 0x — 0. Generically, then, the period of motion
along a separatriz is infinite.
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3.3.1 Linearized Dynamics in the Vicinity of a Fixed
Point

Linearizing in the vicinity of such a fixed point, we write dx = = — * and
dv = v — v*, obtaining

O ot D)o

This is a linear equation, which we can solve completely.

Consider the general linear equation ¢ = A ¢, where A is a fixed real matrix.
Now whenever we have a problem involving matrices, we should start thinking
about eigenvalues and eigenvectors. Invariably, the eigenvalues and eigenvectors
will prove to be useful, if not essential, in solving the problem. The eigenvalue
equation is

Ay, =, ¢, . (3.29)

Here 1, is the a™ right eigenvector * of A. The eigenvalues are roots of the

characteristic equation P(A) = 0, where P(\) = det(A -1 — A). Let’s expand
o(t) in terms of the right eigenvectors of A:

() =3 Colt) b, - (3.30)

Assuming, for the purposes of this discussion, that A is nondegenerate, and its

eigenvectors span R”, the dynamical system can be written as a set of decoupled
first order ODEs for the coefficients C,(t):

C,=\,C, , (3.31)
with solutions
C,(t) =C,(0) exp(A 1) . (3.32)

If Re(\,) > 0, C,(t) flows off to infinity, while if Re(A,) > 0, C,(t) flows to

zero. If |\, | = 1, then C,(t) oscillates with frequency Im(\,).

For a two-dimensional matrix, it is easy to show — an exercise for the reader
— that
PA) =X ~-TA+D, (3.33)

where 7' = Tr(A) and D = det(A). The eigenvalues are then
A =1T+1VT? 4D . (3.34)

If A is symmetric, the right and left eigenvectors are the same. If A is not symmetric, the right
and left eigenvectors differ, although the set of corresponding eigenvalues is the same.
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Figure 3.2: Phase curves in the vicinity of centers and saddles.

We’ll study the general case in Physics 110B. For now, we focus on our conser-
vative mechanical system of eqn. 3.28. The trace and determinant of the above
matrix are T =0 and D = = U”(z*). Thus, there are only two (generic) possi-
bilities: centers, when U”(z*) > 0, and saddles, when U”(z*) < 0. Examples of
each are shown in Fig. 3.1.

3.4 Examples of Conservative One-Dimensional
Systems

3.4.1 Harmonic Oscillator

Recall again the harmonic oscillator, discussed in lecture 3. The potential energy
is U(z) = 3ka?. The equation of motion is

d*x du

ar_ oY _ .
m— o T, (3.35)

where m is the mass and k the force constant (of a spring). With v = &, this
may be written as the N = 2 system,

S0-(SY0-(2) e
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Figure 3.3: Phase curves for the harmonic oscillator.

where w = /k/m has the dimensions of frequency (inverse time). The solution
is well known:

z(t) = x, cos(wt) + % sin(wt) (3.37)
v(t) = v, cos(wt) —w z, sin(wt) . (3.38)

The phase curves are ellipses:
wo (1) +wy LV (t) = O, (3.39)

where C' is a constant, independent of time. A sketch of the phase curves and
of the phase flow is shown in Fig. 3.3. Note that the z and v axes have different
dimensions.

Energy is conserved:
E = 1mv® + 1ka® (3.40)

Therefore we may find the length of the semimajor and semiminor axes by
setting v = 0 or x = 0, which gives

[2F 2K
=4/ = =4/ — . 3.41
xmax k ? vmax m ( )

The area of the elliptical phase curves is thus

2rk
AE)=nmx_ v = ) 3.42
( ) max ~ max m ( )
The period of motion is therefore
0A m
T(E)=m—=—= =2/ — 4
(B)=m S =om [T (3.3

which is independent of E.
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Figure 3.4: Phase curves for the simple pendulum. The separatriz divides phase space
into regions of vibration and libration.

3.4.2 Pendulum

Next, consider the simple pendulum, composed of a mass point m affixed to a
massless rigid rod of length ¢. The potential is U(0) = —mgl cos 6, hence

me* 6 = —% = —mglsinf . (3.44)

% (i) - <_wgwsm 9) ; (3.45)

where w = 0 is the angular velocity, and where w, = 1/g/¢ is the natural
frequency of small oscillations.

This is equivalent to

The conserved energy is
E=1mf0*+U(®). (3.46)

Assuming the pendulum is released from rest at 6 = 6,,

2K

= 0% — 2w2 cosf = —2w? cos b, . (3.47)

The period for motion of amplitude 6, is then

- K(sin®16,) , (3.48)

o
T(e)—\/—g/ dé
O wo ) Veosf —cosfy  wo
0
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where K(z) is the complete elliptic integral of the first kind. Expanding K (z),

we have )
(6,) w_”{l L sin? (16,) + & sin' (26,) + ... } . (3.49)
0
For 6, — 0, the period approaches the usual result 27 /w,, valid for the linearized
equation § = —wj 0. As 6, — Z, the period diverges logarithmically.

The phase curves for the pendulum are shown in Fig. 3.4. The small oscilla-
tions of the pendulum are essentially the same as those of a harmonic oscillator.
Indeed, within the small angle approximation, sinf ~ 6, and the pendulum
equations of motion are exactly those of the harmonic oscillator. These oscilla-
tions are called librations. They involve a back-and-forth motion in real space,
and the phase space motion is contractable to a point, in the topological sense.
However, if the initial angular velocity is large enough, a qualitatively different
kind of motion is observed, whose phase curves are rotations. In this case, the
pendulum bob keeps swinging around in the same direction, because, as we’ll
see in a later lecture, the total energy is sufficiently large. The phase curve
which separates these two topologically distinct motions is called a separatriz.

3.4.3 Other Potentials

Using the phase plotter application written by Ben Schmidel, available on the
Physics 110A course web page, it is possible to explore the phase curves for a
wide variety of potentials. Three examples are shown in the following pages.
The first is the effective potential for the Kepler problem,

k 2
Ugr)=—+—, 3.50
eff( ) r 2/1/7,,2 ( )
about which we shall have much more to say when we study central forces.
Here r is the separation between two gravitating bodies of masses m, 5, p =
myms/(my + my) is the ‘reduced mass’, and k& = Gmy;m,, where G is the
Cavendish constant. We can then write

Uygl(r) = Uo{ 1y i} , (3.51)

x 22

where r, = (?/uk has the dimensions of length, and z = r/r,, and where
U, = k/ry = pk?/0?. Thus, if distances are measured in units of r, and the
potential in units of U,, the potential may be written in dimensionless form as
Uz) = -1+ 5.
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The second is the hyperbolic secant potential,
U(x) = —U,sech®(z/a) , (3.52)

which, in dimensionless form, is U(x) = —sech®(z), after measuring distances in
units of a and potential in units of U,.

The final example is

T

U(z) = U, { cos (2) + %} . (3.53)

Again measuring z in units of @ and U in units of U,, we arrive at U(z) =
cos(z) + 3.
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-1/x+1/(2%*x*x) " Graph

Figure 3.5: Phase curves for the Kepler effective potential U(x) = —z~1 + 1272,
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Figure 3.6: Phase curves for the potential U(x) = —sech?(x).
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Figure 3.7: Phase curves for the potential U(x) = cos(x) + 5z.
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Chapter 4

Linear Oscillations

Harmonic motion is ubiquitous in Physics. The reason is that any potential
energy function, when expanded in a Taylor series in the vicinity of a local
minimum, is a harmonic function:

VU(q*)=0

N
. . oU
U(q)=Ul(q HZT
im1 9% lg=q~

(q] 4) (G—q)+- - (4.1)

_]k‘ 1 a(b an

where the {q;} are generalized coordinates — more on this when we discuss
Lagrangians. In one dimension, we have simply

Ulx)=U@")+i0"(@") (z—z) +... . (4.2)

Provided the deviation n = ¢ — ¢* is small enough in magnitude, the remaining
terms in the Taylor expansion may be ignored. Newton’s Second Law then gives

mij==U"(z")n+ On?) . (4.3)

This, to lowest order, is the equation of motion for a harmonic oscillator. If
U"(z*) > 0, the equilibrium point x = x* is stable, since for small deviations
from equilibrium the restoring force pushes the system back toward the equilib-
rium point. When U”(z*) < 0, the equilibrium is unstable, and the forces push
one further away from equilibrium.

4.1 Damped Harmonic Oscillator

In the real world, there are frictional forces, which we here will approximate by
F = —yv. We begin with the homogeneous equation for a damped harmonic
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oscillator,

d’r dz 9

@4‘25@4—(4)01‘:0, (44)
where v = 2. To solve, write () = >, C; e~*i'. This renders the differential
equation 4.4 an algebraic equation for the two eigenfrequencies w;, each of which
must satisfy

w? +2iBw —wi =0, (4.5)

hence
wy = —if + (wg — ). (4.6)

The most general solution to eqn. 4.4 is then
z(t)=C e ™+ C_e ™! (4.7)

where C', are arbitrary constants. Notice that the eigenfrequencies are in general
complex, with a negative imaginary part (so long as the damping coefficient g

is positive). Thus e ™+' decays to zero as t — oc.

4.1.1 Classification of Damped Harmonic Motion

We identify three classes of motion:
(i) Underdamped (wj > ?) Do
(ii) Overdamped (wi < (5?)
(iii) Critically Damped (wg = §7)

(t) = C e cos(vt) + D e P sin(vt)
(t) = C e cosh(it) + D e P sinh(it)
t)y=Ce P4 Dte "

(t)

8

8

where v = (w2 — %)% and ¥ = iv = (5% — W2)'/%. Note that for case (i) v is
real and v is imaginary, while for case (ii) » is real and v is imaginary. Note
also that the form for x(¢) in case (i) can be applied to case (ii), and vice versa,
since

cos(vt) = cos(—ivt) = cosh(vt)

sin(vt) = sin(—ivt) = sinh(vt) .

The three types of behavior are depicted in fig. 4.1. To concretize these cases in

one’s mind, it is helpful to think of the case of a screen door or a shock absorber.
If the hinges on the door are underdamped, the door will swing back and forth
(assuming it doesn’t have a rim which smacks into the door frame) several times
before coming to a stop. If the hinges are overdamped, the door may take a
very long time to close. To see this, note that the overdamped solution can also
be written as

x(t) = Ae_(ﬂ_\’ )1 + Be_(ﬁ_\/ PR , (4.8)
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Figure 4.1: Three classifications of damped harmonic motion. The initial conditions
are (0) =1, (0) = 0.

with A = $(C+D) and B = 3(C'—D). We now expand the expression /2 — wj

in powers of w?/(%

w2 —-1/2
#od=(1-)
2 4
_ Wo Wo
ﬁ<1_2_52_8_ﬁ4+“')’ (4.9)
which leads to
2 4
B 9 9 0 Wo
2
B+ /62_w2:25_ﬂ—+.... (4.10)
20
Thus, we can write
x(t) = Ae /"  Be 2 (4.11)
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with

_ 1 ~ 20
T = ﬁ— /—52_w(2) ~ wg (412)
Ty = ! Ni (4.13)
U 287 '

Thus x(t) is a sum of exponentials, with decay times 7, ,. For 3> w,, we have

that 7, is much larger than 7, — the ratio is 7, /7, ~ 43%/w? > 1. Thus, on time
scales on the order of 7, the second term has completely damped away. The
decay time 7, though, is very long, since (3 is so large. So a highly overdamped
oscillator will take a very long time to come to equilbrium.

4.1.2 Remarks on the Case of Critical Damping

Define the first order differential operator

dt +05. (4.14)

D, = —
Ly

The solution to D, x(t) = 0 is Z(t) = Ae P!, where A is a constant. Note that
the commutator of D, and t is unity:

D, t] =1, (4.15)

where [A, B] = AB — BA. The simplest way to verify eqn. 4.15 is to compute
its action upon an arbitrary function f(¢):

D2 1] 70 = (G +8) 110 -1 (5 +8) 100
d d
= L) -1 4 rw =) (4.10)

We know that z(t) = #(t) = Ae P satisfies D, x(t) = 0. Therefore

0="D,[D,,t] Z(t)

(t :z(t)) . (4.17)
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We already know that D? #(t) = D, D, Z(t) = 0. The above equation establishes
that the second independent solution to the second order ODE D? z(t) = 0 is
x(t) =t x(t). Indeed, we can keep going, and show that

Dr (t”—l f(t)) ~0. (4.18)

Thus, the n independent solutions to the n™* order ODE

(% + 6)n 2(t) =0 (4.19)

are
z.(t) = Athe™ k=0,1,...,n—1. (4.20)

4.2 Damped Harmonic Oscillator with Forcing

When forced, the equation for the damped oscillator becomes

d*z dr
ER VLN PO} (1.21)

where f(t) = F(t)/m. Since this equation is linear in z(t), we can, without loss
of generality, restrict out attention to harmonic forcing terms of the form

f(t) = focos(2t +¢y) = Re| fye %o e_mt] (4.22)
where Re stands for “real part”. Here, {2 is the forcing frequency.

Consider first the complex equation

d> d , :
d_tz + 20 d—j +wlz = fye o (4.23)

We try a solution z(t) = z, e, Plugging in, we obtain the algebraic equation

fO @—1'800
w2 — 2if0 — (2

= A() P fem o (4.24)

ZOZ

The amplitude A(f2) and phase shift §({2) are given by the equation

1
WE —2iBR — 2

A(02) P = (4.25)
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A basic fact of complex numbers:

1 ; itan=1(b/a)
__ at+ib e ' (4.26)

a—ib a®+b? Va2 + b2

Thus,
~1/2
A(Q) = (<w§ PPy 45292) (4.27)
206182
-1

Now since the coefficients 3 and w? are real, we can take the complex con-
jugate of eqn. 4.23, and write

F4 282+ wiz= fye Poe (4.29)
F42024+ Wiz = fyetiPoetit (4.30)

where Z is the complex conjugate of z. We now add these two equations and
divide by two to arrive at

F4+280+wir = f, cos(t+ @) . (4.31)
Therefore, the real, physical solution we seek is
z . (1) = Re [A(Q) e L f om0 e‘mt]
= A(2) fy cos (2t + ¢y — 6(12)) . (4.32)

The quantity A(f2) is the amplitude of the response (in units of f,), while §({2)
is the (dimensionless) phase lag.

The maximum of the amplitude A({2) occurs when A’(£2) = 0. From
dA 202
— = (P - W2+ 267, 4.33
10~ gy -

we conclude that A’'(£2) = 0 for 2 = 0 and for 2 = (2, where

O = \Jwd — 282 . (4.34)

The solution at 2 = (2 pertains only if wi > 24% of course, in which case
2 =0 is a local minimum and 2 = 2; a local maximum. If wj < 23? there is
only a local maximum, at {2 = 0. See Fig. 4.2.

48



5|||||||||

LI LR ||||||||||||||||||1

A(Q)
a(Q)/m

0
0 0.5 1 1.5 2 0 0.5 1 1.5 2

Q/w, Q/w,
Figure 4.2: Amplitude and phase shift versus oscillator frequency (units of wy) for
B /wo values of 0.1 (red), 0.25 (magenta), 1.0 (green), and 2.0 (blue).

Since equation 4.21 is linear, we can add a solution to the homogeneous

equation to z,,(f) and we will still have a solution. Thus, the most general
solution to eqn. 4.21 is

x(t) = xinh(t) + xhom<t>
— Re [A(Q) ei§(9) . fO e—icpo e—iQti| + C+ e—inrt +C 6_1‘(*)715

Zinn () Ty ()
o\ ~ o\

=A(£2) focos (2t + ¢, — 6(2)) + Ce Pt cos(vt) + De sin(yti . (4.35)

Ve

The last two terms in eqn. 4.35 are the solution to the homogeneous equa-
tion, i.e. with f(t) = 0. They are necessary to include because they carry with
them the two constants of integration which always arise in the solution of a
second order ODE. That is, C' and D are adjusted so as to satisfy x(0) = z, and
iy = v,. However, due to their e~ prefactor, these terms decay to zero once
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t reaches a relatively low multiple of 3~!. They are called transients, and may
be set to zero if we are only interested in the long time behavior of the system.
This means, incidentally, that the initial conditions are effectively forgotten over

a time scale on the order of 57!,

For 2y > 0, one defines the quality factor, (), of the oscillator by @) =
2:/26. @ is a rough measure of how many periods the unforced oscillator
executes before its initial amplitude is damped down to a small value. For a
forced oscillator driven near resonance, and for weak damping, () is also related
to the ratio of average energy in the oscillator to the energy lost per cycle by

the external source. To see this, let us compute the energy lost per cycle,

21/ 02
AE =m [dtz f(t)

0
2w/ 2

=—m [dt 2 A f] sin(2t + p, — ) cos(2t + )

0
=7mA fimsiné

=213m 2 A*(2) 2,

(4.36)

since sin §(£2) = 2662 A(£2). The oscillator energy, averaged over the cycle, is

2w/ 2

(E) = %/dt Im(i* + wg 2?)
0

= im (2% +wj) A*(02) f7 .

Thus, we have
2n(E)  2* +w]
AE 480
Thus, for 2 ~ 2, and 3? < w7, we have

0~ 2n(FE) . wo

AE ~ 283"

4.2.1 Resonant Forcing

(4.37)

(4.38)

(4.39)

When the damping 3 vanishes, the response diverges at resonance. The solution

to the resonantly forced oscillator

i+twir= fycos(wyt+ )

20

(4.40)



is given by

mhom(t)

N

z(t) = 2f—0 t sin(wyt + @)+ A cos(wyt) + B sin(w,y t) . (4.41)
wo
The amplitude of this solution grows linearly due to the energy pumped into
the oscillator by the resonant external forcing. In the real world, nonlinearities
can mitigate this unphysical, unbounded response.

4.2.2 R-L-C Circuits

Consider the R-L-C circuit of Fig. 4.3. When the switch is to the left, the
capacitor is charged, eventually to a steady state value Q = C'V. At t = 0 the
switch is thrown to the right, completing the R-L-C circuit. Recall that the
sum of the voltage drops across the three elements must be zero:

Q

dl
L—+1 2 =0. 4.42
dt+ R+C 0 ( )

We also have Q = I, hence

d2Q R dQ 1
W—Fz%—f—ﬁQ—o, (4.43)

which is the equation for a damped harmonic oscillator, with w, = (LC)~/2
and # = R/2L.

The boundary conditions at t = 0 are Q(0) = C'V and Q(0) = 0. Under

| Z— I

k J

Figure 4.3: An R-L-C' circuit which behaves as a damped harmonic oscillator.
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these conditions, the full solution at all times is

Qt)y=CVe™ (COS vt + A sin Vt> (4.44)
v
w2
I(t) = —CV 22 e P sinut . (4.45)
v

4.2.3 Examples

Third Order Linear ODE with Forcing

The problem is to solve the equation

Lix=T+(a+b+c)i+ (ab+ac+bc)d+ abcx = fycos(§2t) . (4.46)

The key to solving this is to note that the differential operator £, factorizes:
3 d2

:ﬁ—|—(a—l—b—f—c)ﬁ—i—(aquac—kbc)%—kabc

_ (d% + a) (% + b) (% + c) : (4.47)

which says that the third order differential operator appearing in the ODE is in
fact a product of first order differential operators. Since

Ly

d
d_f +ar=0 = z(t)=Ae ", (4.48)
we see that the homogeneous solution takes the form
z,(t) =Ae ™+ Be "+ Ce | (4.49)

where A, B, and C are constants.

To find the inhomogeneous solution, we solve L;x = f, e~ and take the

real part. Writing z(t) = x,e~**, we have
Loxge™™ = (a—i2) (b—i0) (c —if2) xge (4.50)
and thus o
P m){]zioi D)= = AD S S
where
AQ) = [(@+ 2 12+ @) (@ + )] o (4.51)
5(£2) = tan™* (%) + tan~* (%) + tan~* (%) . (4.52)
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Figure 4.4: A driven L-C-R circuit, with V(t) = V cos(wt).

Thus, the most general solution to L, x(t) = f, cos({2t) is
x(t) = A(2) fy cos (2t — 6(2)) + Ae™™ + Be ™"+ Ce™ . (4.53)

Note that the phase shift increases monotonically from §(0) = 0 to §(co) = 3.

Mechanical Analog of RLC Circuit

Consider the electrical circuit in fig. 4.4. Our task is to construct its mechanical
analog. To do so, we invoke Kirchoft’s laws around the left and right loops:

Ly + % +R (I, —LL)=0 (4.54)
1
Lols+ Ro b+ R (I, — L) = V(1) . (4.55)

Let Q1 (t) be the charge on the left plate of capacitor C}, and define

t

Qat) = / dt’ I,(t') . (4.56)
0
Then Kirchoft’s laws may be written
Ry . 1 B
Q1+ I, (Q1—Q2) + I.Ch Q1 =0 (4.57)
Ry . Ry, . . V(t)

- - — = 4.

Q2 + T Q2 + T (Q2— Q1) Ly (4.58)

23



Figure 4.5: The equivalent mechanical circuit for fig. 4.4.

Now consider the mechanical system in Fig. 4.5. The blocks have masses
My and Ms,. The friction coefficient between blocks 1 and 2 is by, and the
friction coefficient between block 2 and the floor is by. There is a spring of
spring constant k; which connects block 1 to the wall. Finally, block 2 is driven
by a periodic acceleration f,, cos(wt). We now identify

R R,

1
Xl — Ql y X2 — Q2 y bl e L_l y b2 — L2 y k’l < m y (459)
as well as f(t) < V(t)/Lo.
The solution again proceeds by Fourier transform. We write
V(t) = Ood—“’ V(w)e ™t (4.60)
S or '
and -
t d .
Qb _ / dw Q) e (4.61)
_[2 (t) 2T ]2((,4))
The frequency space version of Kirchoft’s laws for this problem is
é,(f)
—UJQ—?:WRl/Ll‘i‘l/LlCI Rl/Ll Ql(w) 0
iw Ry /Ly —iw + (Ri + Ro)/La) \ I(w) V(w)/Ly
(4.62)

The homogeneous equation has eigenfrequencies given by the solution to det G (w) =
0, which is a cubic equation. Correspondingly, there are three initial conditions
to account for: Q(0), 1,(0), and I,(0). As in the case of the single damped
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harmonic oscillator, these transients are damped, and for large times may be
ignored. The solution then is

Ql(w) —wQ—inl/Ll—f—l/LlOl Rl/Ll

-1

0

I(w) iw Ry /Ly —iw + (R1 + Ry) /L V(w)/L
(4.63)

To obtain the time-dependent @ (t) and I,(t), we must compute the Fourier

transform back to the time domain.

4.2.4 General Solution by Green’s Function Method

For a general forcing function f(t), we solve by Fourier transform. Recall that a
function F'(¢) in the time domain has a Fourier transform F'(w) in the frequency
domain. The relation between the two is:

F(t) = / Z—:e—wtﬁ(w) — F(w)= /dte”‘”tF(t). (4.64)

We can convert the differential equation 4.2 to an algebraic equation in the
frequency domain, #(w) = G(w) f(w), where
A 1

W) = = (4.65)

is the Green’s function in the frequency domain. The general solution is written

Oodw

() = / e Gw) fl) + 1) (4.66)

—00

where z,(t) = Y, C; e ™t is a solution to the homogeneous equation. We may
also write the above integral over the time domain:

z(t) = /dt’G(t =) f(t") 4+ x,(¢) (4.67)
Fdo ..
G(s) = / % e~ Gi(w)
= ;_1 exp(—pfs) sin(rs) O(s) (4.68)
where ©(s) is the step function,
o= 1221 o
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Example: Pulse Force

Consider a pulse force

&)= fo0)e —1)= { 50 gtgefwtisi.T

In the underdamped regime, for example, we find the solution

x(t) = f—g {1 — e Pteosuvt — ée_ﬁt sin yt}
wa v

if0<t<T and

xz(t) = Jo { (e’ﬁ(t’T) cosv(t —T) — e P cosvt)

+ b (e_ﬁ(t_T) sinv(t —T) — e P sinut) }
v

if¢t>1T.

response

position
=}
[6)]
T
o

NN

A

0 05 1 15

time t/T

Figure 4.6: Response of an underdamped oscillator to a pulse force.
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4.3 General Linear Autonomous Inhomogeneous
ODEs

This method immediately generalizes to the case of general autonomous linear
inhomogeneous ODEs of the form
d"r d"lz

+a

dz
qin n_1W+...+a1E+aox:f(t) . (4.73)

We can write this as

L,a(t) = f(t) | (4.74)
where £, is the n'" order differential operator
dr ! d

The general solution to the inhomogeneous equation is given by

o0

() = 2, (t) + /dt’ Gt t) f(t) (4.76)

—00

where G(t,1') is the Green’s function. Note that £, z,(t) = 0. Thus, in order
for eqns. 4.74 and 4.92 to be true, we must have

this vanishes 00

—
Loa(t) = L,a,(8) + /dt’ L,GLE) F(H) = f(2) | (4.77)
which means that
LG = 5(t—t) (4.78)

where 0(t — t') is the Dirac d-function. Some properties of o(z):

b fly) ifa<y<b
/dx fx)d(x —y) = (4.79)
a 0 ify<aory>5b.
o(g(x)) = > —5}(; (; :)C|> : (4.80)
g(iv:)ijo Z
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valid for any functions f(z) and g(x). The sum in the second equation is over
the zeros x; of g(x).

Incidentally, the Dirac -function enters into the relation between a function
and its Fourier transform, in the following sense. We have

[e.9]

0= [5 e ) (481)
flw) = / dt et ™t f(¢) . (4.82)

Substituting the second equation into the first, we have

ft) = 75—: et 7dt’ et F ()
:jodt/ {_7621_? ew(t’w} £t | (4.83)

which is indeed correct because the term in brackets is a representation of 6(¢ —
t'):
e}
dw
—e
2m

— 00

ws = §(s) . (4.84)

If the differential equation £, z(t) = f(t) is defined over some finite ¢ interval
with prescribed boundary conditions on x(t) at the endpoints, then G(t,t") will
depend on t and ¢’ separately. For the case we are considering, the interval is
the entire real line t € (—o0,00), and G(t,t') = G(t — t') is a function of the
single variable t — t'.

Note that £, = E(%) may be considered a function of the differential oper-
ator 4. If we now Fourier transform the equation £, z(t) = f(t), we obtain

[ w I W d" dn—l d
/dt@ tf(t):/dte t{%—kan_lW+...+a1£+a0}x(1ﬁ) (485)
= /dt et {(—iw)" +a, 1 (—iw)" M+ 4 ay (—iw) + ao} x(t) ,
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where we integrate by parts on ¢, assuming the boundary terms at ¢ = +o0
vanish, 7.e. x(+o00) = 0, so that, inside the ¢ integral,

givt (%)k:c(t) - [(— %)k ei“’t] 2(t) = (—iw)* et (1) | (4.86)

Thus, if we define
Lw)=)Y a,(—iw)*, (4.87)
then we have X X

L(w)i(w) = flw), (4.88)

where a,, = 1. According to the Fundamental Theorem of Algebra, the n*™
degree polynomial £(w) may be uniquely factored over the complex w plane
into a product over n roots:

Lw)=(—1)"(w—w)(w—wsy) - (w—wy,) . (4.89)

If the {a,} are all real, then [ﬁ(w)]* — L(—w*), hence if 2 is a root then so is
—{2*. Thus, the roots appear in pairs which are symmetric about the imaginary
axis. Le. if {2 =a 4 1bis a root, then so is —2* = —a + ib.

The general solution to the homogeneous equation is

m () =) At (4.90)
=1

which involves n arbitrary complex constants A;. The susceptibility, or Green’s
function in Fourier space, G(w) is then
A 1 i

Al Sl Frampen e ey premEW R (491)

and the general solution to the inhomogeneous equation is again given by

o0

w(t) = 2, () + /dt’ Gt —t) f(t) (4.92)

—00

where z, (t) is the solution to the homogeneous equation, i.e. with zero forcing,
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and where

[e.o]

dw —iws A
G(s) = / e ®

:z'"/g—j; (w_m)(w_e;;---(w—w>

— 00

(4.93)

where we assume that Imw; < 0 for all j. The integral above was done using
Cauchy’s theorem and the calculus of residues — a beautiful result from the

theory of complex functions.

As an example, consider the familiar case

L(w) = w? — 2ifw — w?

- (e e,
with w, = —if 4+ v, and v = (w2 — 3%)'/2. This yields

L(wy) =Flwy —w_)=F2w.

Then according to equation 4.93,
e—iw+s e—iOJ,S
G(s) = + O(s
=) {iﬁ’(w+) @'E’(w_)} =)

e—ﬁs e—il/s e—ﬁs eius
{ L } o (s)

-2tV 2iv

vl e P sin(vs) O(s) ,

exactly as before.
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4.4 Kramers-Kronig Relations (advanced ma-
terial)

Suppose X(w) = G(w) is analytic in the UHP!. Then for all v, we must have

[e.e]

/@ Xv) g (4.97)

2T v —w + i€
— 0o
where € is a positive infinitesimal. The reason is simple: just close the contour
in the UHP, assuming X(w) vanishes sufficiently rapidly that Jordan’s lemma
can be applied. Clearly this is an extremely weak restriction on X(w), given the
fact that the denominator already causes the integrand to vanish as |w|™!.

Let us examine the function

1 V—w s
= — . 4.98
v—w+ie (v—w)?+e  (v—w)?+e (4.98)

which we have separated into real and imaginary parts. Under an integral sign,
the first term, in the limit € — 0, is equivalent to taking a principal part of the
integral. That is, for any function F'(v) which is regular at v = w,

, [dv V—w [dv F(v)
im (& Y"Y poy=p [ZX
) (v —w)?+ e ) =P

—00 —00

(4.99)

My —w

The principal part symbol P means that the singularity at v = w is elided,
either by smoothing out the function 1/(v — €) as above, or by simply cutting
out a region of integration of width € on either side of v = w.

The imaginary part is more interesting. Let us write

€
For |u| > ¢, h(u) ~ ¢/u?, which vanishes as ¢ — 0. For u = 0, h(0) = 1/e which
diverges as € — 0. Thus, h(u) has a huge peak at u = 0 and rapidly decays to 0
as one moves off the peak in either direction a distance greater that e. Finally,
note that

[ee)

/du h(u) =7, (4.101)

— 00

In this section, we use the notation X(w) for the susceptibility, rather than G(w)
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a result which itself is easy to show using contour integration. Putting it all
together, this tells us that

€

Thus, for positive infinitesimal e,
L _plrins (4.103)
=P—Fimd(u :
u =+ i€ u ’

a most useful result.

We now return to our initial result 4.97, and we separate X(w) into real and
imaginary parts:
A ~! Lol
X(w) =X (w) +iX (w) . (4.104)
(In this equation, the primes do not indicate differentiation with respect to
argument.) We therefore have, for every real value of w,

o0

0= / g—; [X’(u) + z'X”(z/)] [79 - i — — (v - w)] . (4.105)

—00

Taking the real and imaginary parts of this equation, we derive the Kramers-
Kronig relations:

OO@ )A(”<I/)

(o) — 4.1

X' (w) +P S (4.106)

Viw) = —p X (4.107)
m™UV—Ww
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Chapter 5

Calculus of Variations

5.1 Snell’s Law

Warm-up problem: You are standing at point (z,,y,) on the beach and you
want to get to a point (z,,y,) in the water, a few meters offshore. The interface
between the beach and the water lies at x = 0. What path results in the shortest
travel time? It is not a straight line! This is because your speed v; on the sand
is greater than your speed v, in the water. The optimal path actually consists
of two line segments, as shown in Fig. 5.1. Let the path pass through the point
(0,y) on the interface. Then the time T is a function of y:

1 1
= — 2l + @y —y)?+— a2l +(—y)?*. (5.1)
Uy Uy

To find the minimum time, we set

dT Y—Y

Y — Y
\/1’1 (y—uy)? Y2 \/w§+ (yy — y)?

sinf;  sinfy

= — . 9.2
o - (5.2)
Thus, the optimal path satisfies
sin 01 (%1
= = 5.3
sinfly vy (5.3)

which is known as Snell’s Law.

Snell’s Law is familiar from optics, where the speed of light in a polarizable
medium is written v = ¢/n, where n is the index of refraction. In terms of n,
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(351:?}1)

&=

Figure 5.1: The shortest path between (x1,y;) and (x2,y2) is not a straight line, but
rather two successive line segments of different slope.

If there are several interfaces, Snell’s law holds at each one, so that
n;sinf;, = n, ,sinb,,, , (5.5)
at the interface between media ¢ and ¢ + 1.

Now let us imagine that there are many such interfaces between regions of
very small thicknesses. We can then regard n and 6 as continuous functions of
the coordinate x. The differential form of Snell’s law is

n(z) sin (0(z)) = n(z + dz) sin (0(z + dz))
= (n+n'dz) (sinf + cos 00’ dx)

=nsing + (n' sinf +n cosf6') dx . (5.6)
Thus,
de 1 dn

If we write the path as y = y(x), then tan =y, and
/!

0 =" tanty = L
dx noy 1—|—y’2’

which yields
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pavement.
v 2L

Figure 5.2: The path of shortest length is composed of three line segments. The
relation between the angles at each interface is governed by Snell’s Law.

This is a differential equation that y(x) must satisfy if the functional

T[y(z)] = /% = %fdﬂc n(z)\/1+ y"? (5.10)

is to be minimized.

5.2 Functions and Functionals

A function is a mathematical object which takes a real (or complex) variable,
or several such variables, and returns a real (or complex) number. A functional
is a mathematical object which takes an entire function and returns a number.
In the case at hand, we have

z2

T[y(a:)} = /dmL(y,y’,x) , (5.11)

xr1

where the function L(y, v/, x) is given by

Ly, x) = ¢ 'n(z) (/1447 . (5.12)
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(o, ys)
y(x) + oy(x)

{J s )

Figure 5.3: A path y(z) and its variation y(z) + dy(x).

Here n(z) is a given function characterizing the medium, and y(z) is the path
whose time is to be evaluated.

In ordinary calculus, we extremize a function f(z) by demanding that f not
change to lowest order when we change v — = + dx:

fl@+dz) = f(z) + f'(x)de + 5 ["(x) (dx)* + ... . (5.13)
We say that z = 2* is an extremum when f'(z*) = 0.

For a functional, the first functional variation is obtained by sending y(z) —
y(x) + dy(z), and extracting the variation in the functional to order dy. Thus,
we compute

2

Tly(z) + oy(z)] = /dx L(y+ oy,y + 0y, x)

1
T2

:/dx{L+g—L5y+gL,5y +O((dy)° )}

1

T (oL oL d
:T[y(w)}—l—/dx{a—éy oy dasé}

1

z2

T o lor 4 /oL oL
pr— T — — — — —_—
[y(x)} + /d [83/ o <8y’>] oy + oy oy

1

(5.14)

Now one very important thing about the variation dy(z) is that it must vanish
at the endpoints: dy(z;) = dy(x,) = 0. This is because the space of functions
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under consideration satisfy fixed boundary conditions y(z;) = y; and y(x,) = ys,.
Thus, the last term in the above equation vanishes, and we have

Z2
OL d (0L
0= |de | = ——| == )| 0y . 5.15
/ el dl‘((?y’)] ! (>19)
Z1
We say that the first functional derivative of 7' with respect to y(z) is
oT oL d (0L
=|l=-— = 5.16
oy(x) |0y dx (83/)] ’ (519

where the subscript indicates that the expression inside the square brackets is to
be evaluated at x. The functional T’ [y(x)} is extremized when its first functional
derivative vanishes, which results in a differential equation for y(x),

oL d (0L

known as the Fuler-Lagrange equation. Since L is independent of y, we have

o= 4 (0L _1d| ny
Cdx\0y' ) cdx V1+y?
n/ y/ n y//

—z ,/1_|_y/2+ C (1_|_y/2)3/2 ’

We thus recover the second order equation in 5.9. However, note that the above
equation directly gives

(5.18)

n(x) sinf(zx) = const. , (5.19)

which follows from the relation iy’ = tan . For y(z) we obtain

n?y'? dy o
s=a’=const. = S =-—oo (5.20)
L+y dx n?(z) — a?

In general, we may expand a functional Fly + dy] in a functional Taylor series,
Fly+ oy] = Fly] + /dxl Ki(z1) 0y(z,) + %/alxl/dx2 K,y (1, 29) 8y (xy) dy(xsy)

+ %/dxl/d%/dx:s Ky(2q, 29, 13) 6y(2,) 0y(25) Sy(3) + . .. (5.21)

and we write

J"F
oy(wy) - - oy (an)

K, (x,...,z,) (5.22)

for the n'" functional derivative.
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5.3 Examples from the Calculus of Variations

Here we present three useful examples of variational calculus as applied to prob-
lems in mathematics and physics.

5.3.1 Example 1 : Minimal Surface of Revolution

Consider a surface formed by rotating the function y(z) about the xz-axis. The

area is then
/da: 2my /1 —|— (5.23)

and is a functional of the curve y(z). Thus we can define L(y,y') = 27y+/1 + 32
and make the identification y(z) < ¢(t). We can then apply what we have
derived for the mechanical action, with L = L(q, 4,t), mutatis mutandis. Thus,

the equation of motion is

d (0L oL

—N = =5, (5.24)
dz \ Oy’ Ay

which is a second order ODE for y(x). Rather than treat the second order

equation, though, we can integrate once to obtain a first order equation, by
noticing that

8L . , OL oL _8L y 8_L,_8_L
dx - d:v

83/ Y 8_ 83/ 8_y’y _&gy ox

d (0L oL oL
=y |—(=)-=]-=. (5.25)
dx \ Oy’ oy ox
In the second line above, the term in square brackets vanishes, thus

oL dJ oL
J—yy—L = = T (5.26)

and when L has no explicit z-dependence, 7 is conserved. One finds

12

)
Vi

2
oy Jl+y?t=—— Y (5.27)

Vi

j:27]'y

Solving for 7/,

9 2
_y (Wy> ~1, (5.28)
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which may be integrated with the substitution y = % cosh X, yielding

y(z) = b cosh (x - “) , (5.29)

where a and b = % are constants of integration. Note there are two such
constants, as the original equation was second order. This shape is called a
catenary. As we shall later find, it is also the shape of a uniformly dense
rope hanging between two supports, under the influence of gravity. To fix the

constants a and b, we invoke the boundary conditions y(z,) = y; and y(z,) = y,.

Consider the case where —z; = 2z, = x, and y; = y, = y,- Then clearly
a = 0, and we have

Yo = b cosh (%) = ~y=#r"!coshk, (5.30)

with v = y,/x, and k = x,/b. One finds that for any v > 1.5089 there are two
solutions, one of which is a local minimum and one of which is a saddle point of
Aly(x)]. The solution with the smaller value of £ (i.e. the larger value of sech k)
yields the smaller value of A, as shown in Fig. 5.4. Note that

y  cosh(z/b)

yo  cosh(zo/b) ’ (5:31)

so y(z = 0) = yg sech(xy/b).

When extremizing functions that are defined over a finite or semi-infinite
interval, one must take care to evaluate the function at the boundary, for it may
be that the boundary yields a global extremum even though the derivative may
not vanish there. Similarly, when extremizing functionals, one must investigate
the functions at the boundary of function space. In this case, such a function
would be the discontinuous solution, with

( :
y, ifz=ux

y(z) =40 if 2, <z <y (5.32)

Yy =,

This solution corresponds to a surface consisting of two discs of radii y; and ys,,
joined by an infinitesimally thin thread. The area functional evaluated for this
particular y(z) is clearly A = 7(y? +y3). In Fig. 5.4, we plot A/2my? versus the
parameter v = y,/x,. For v > 7. ~ 1.564, one of the catenary solutions is the
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Figure 5.4: Minimal surface solution, with y(x) = bcosh(x/b) and y(xo) = yo. Top
panel: A/27y2 vs. yo/wo. Bottom panel: sech(xo/b) vs. yo/zo. The blue curve
corresponds to a local minimum of A[y(x), and the red curve to a saddle point.

global minimum. For v < 7., the minimum area is achieved by the discontinuous
solution.

Note that the functional derivative,

k() = A {8L d (8L)} (L +y® —yy) | (5.33)

dy  de\0y (1+y7°)%2

indeed vanishes for the catenary solutions, but does not vanish for the discon-
tinuous solution, where K,(x) = 27 throughout the interval (—z,,z,). Since
y = 0 on this interval, y cannot be decreased. The fact that K,(x) > 0 means
that increasing y will result in an increase in A, so the boundary value for A,
which is 27ry2, is indeed a local minimum.

We furthermore see in Fig. 5.4 that for v < 7, &~ 1.5089 the local minimum
and saddle are no longer present. This is the familiar saddle-node bifurcation,
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here in function space. Thus, for v € [0,7,) there are no extrema of Afy(z)],
and the minimum area occurs for the discontinuous y(x) lying at the bound-
ary of function space. For v € (74,7.), two extrema exist, one of which is a
local minimum and the other a saddle point. Still, the area is minimized for
the discontinuous solution. For v € (7, 00), the local minimum is the global
minimum, and has smaller area than for the discontinuous solution.

5.3.2 Example 2 : Geodesic on a Surface of Revolution

We use cylindrical coordinates (p, ¢, z) on the surface z = z(p). Thus,
ds* = dp? + p* d¢?® + da?
— {1 + [z’(p)f} dp + p*d¢? (5.34)

and the distance functional D [¢(p)] is

P2

DIo(p)] = [dpL6.0'p). (5.35)
P1
where
(6,6 p) = 1+ 22(0) + 02 (o) . (5.36)
The Euler-Lagrange equation is
oL d (0L oL
9 d_p((?_(ﬁ’) =0 = o5 const. (5.37)
Thus,
2 4
oL _ o —a, (5.38)

¢ V1422 4 p2 g2

where a is a constant. Solving for ¢’, we obtain

P e ] dp | (5.39)

Py p*—a?

which we must integrate to find ¢(p), subject to boundary conditions ¢(p;) = ¢
with i = 1,2,

On a cone, z(p) = Ap, and we have

dp 1P
—ay 2 -/ 2 1 -
dp=av1+ A\ T o 1+ A2 dtan e 1, (5.40)
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which yields
2

d(p) =B+ VI+ A tan~" /2 — 1, (5.41)

a2

e (L0 2 o

The constants § and a are determined from ¢(p;) = ¢,.

which is equivalent to

5.3.3 Example 3 : Brachistochrone

Problem: find the path between (z,,y,) and (z,,y,) which a particle sliding
frictionlessly and under constant gravitational acceleration will traverse in the
shortest time. To solve this we first must invoke some elementary mechanics.
Assuming the particle is released from (x,,7,) at rest, energy conservation says

%va — mgy = mgy; . (5.43)

Then the time, which is a functional of the curve y(x

) = [ - / oy (5.44)

x1

2

= /de(y,y',x) ,

x1

with
1+ y’2
Ly, v/, e S — 5.45
w4/, 7) = 29(n —y) (543)
Since L is independent of x, eqn. 5.25, we have that
, OL —1/2
J=v oy L= [29 (v —y) (1 + y’2)] (5.46)

is conserved. This yields

y1—Yy
de = — | —"—2—dy , 5.47
% Cy—— (5.47)

with a = (49J?%)~*. This may be integrated parametrically, writing

10) = dz=2asin’*(16)do , (5.48)

y, —y = 2asin®(2
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which results in the parametric equations

z—x;=a(f—sinob) (5.49)
y—1y; = —a(l—cosb) . (5.50)

This curve is known as a cycloid.

5.3.4 Ocean Waves

Surface waves in fluids propagate with a definite relation between their angular
frequency w and their wavevector k = 27/, where A is the wavelength. The
dispersion relation is a function w = w(k). The group velocity of the waves is
then v(k) = dw/dk.

In a fluid with a flat bottom at depth A, the dispersion relation turns out
to be
Vghk shallow (kh < 1)

w(k) = \/gk tanh kh ~ (5.51)
Vgk  deep (kh > 1) .

Suppose we are in the shallow case, where the wavelength A is significantly
greater than the depth h of the fluid. This is the case for ocean waves which
break at the shore. The phase velocity and group velocity are then identical,
and equal to v(h) = \/gh. The waves propagate more slowly as they approach
the shore.

Let us choose the following coordinate system: x represents the distance
parallel to the shoreline, y the distance perpendicular to the shore (which lies
at y = 0), and h(y) is the depth profile of the bottom. We assume h(y) to be a
slowly varying function of y which satisfies £(0) = 0. Suppose a disturbance in
the ocean at position (x5, y,) propagates until it reaches the shore at (z,,y, = 0).
The time of propagation is

- @Z CCQx 1+y/2
T[y(z)] _/U /d \/ Th(s) (5.52)

We thus identify the integrand

1+ y’2
ghly)

Ly,y',z) = (5.53)
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increasing h ——»

v(h) = \/gh \
B

‘.\

Figure 5.5: For shallow water waves, v = y/gh. To minimize the propagation time
from a source to the shore, the waves break parallel to the shoreline.

As with the brachistochrone problem, to which this bears an obvious resem-
blance, L is cyclic in the independent variable x, hence

8L 2 _1/2
o B S /
T=Y 5, [g h(y) (1+y )] (5.54)
is constant. Solving for y/(z), we have
dy a
tanf = — =, [— — 1 .
an Iy ) ) (5.55)

where a = (¢9J)7! is a constant, and where 6 is the local slope of the function
y(x). Thus, we conclude that near y = 0, where h(y) — 0, the waves come in
parallel to the shoreline. If h(y) = ay has a linear profile, the solution is again
a cycloid, with

z(0)
y(0)

where b = 2a/a and where the shore lies at § = 0. Expanding in a Taylor series
in @ for small 0, we may eliminate § and obtain y(x) as

b(0 —sind) (5.56)
b(1—cosb), (5.57)

y(x) = (g)l/?’ A (5.58)
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A tsunami is a shallow water wave that manages propagates in deep water.
This requires A > h, as we've seen, which means the disturbance must have a
very long spatial extent out in the open ocean, where h ~ 10km. An undersea
earthquake is the only possible source; the characteristic length of earthquake
fault lines can be hundreds of kilometers. If we take h = 10km, we obtain
v = v/gh =~ 310m/s or 1100km/hr. At these speeds, a tsunami can cross the
Pacific Ocean in less than a day.

As the wave approaches the shore, it must slow down, since v = /gh is
diminishing. But energy is conserved, which means that the amplitude must
concomitantly rise. In extreme cases, the water level rise at shore may be 20
meters or more.
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Chapter 6

Lagrangian Mechanics

6.1 Generalized Coordinates

A set of generalized coordinates qy, . ..,q, completely describes the positions of
all particles in a mechanical system. In a system with d; degrees of freedom
and k constraints, n = d; — k independent generalized coordinates are needed
to completely specify all the positions. A constraint is a relation among coordi-
nates, such as 2 + y? + 22 = a? for a particle moving on a sphere of radius a.
In this case, d; = 3 and k£ = 1. In this case, we could eliminate z in favor of z
and y, i.e. by writing z = £/a? — 22 — 92, or we could choose as coordinates
the polar and azimuthal angles 6 and ¢.

For the moment we will assume that n = d; — k, and that the generalized
coordinates are independent, satisfying no additional constraints among them.
Later on we will learn how to deal with any remaining constraints among the

{q1,--,q,}

The generalized coordinates may have units of length, or angle, or perhaps
something totally different. In the theory of small oscillations, the normal coor-
dinates are conventionally chosen to have units of (mass)'/? x (length). However,
once a choice of generalized coordinate is made, with a concomitant set of units,
the units of the conjugate momentum and force are determined:

2 2
pl="5 7 o [Rl=Tmer (6.1
T o] T [q,]

where [A} means ‘the units of A’, and where M, L, and T stand for mass,
length, and time, respectively. Thus, if ¢, has dimensions of length, then p_ has
dimensions of momentum and F has dimensions of force. If ¢, is dimensionless,
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as is the case for an angle, p, has dimensions of angular momentum (M L?/T)
and F, has dimensions of torque (M L?/T?).

6.2 Hamilton’s Principle

The equations of motion of classical mechanics are embodied in a variational
principle, called Hamilton’s principle. Hamilton’s principle states that the mo-
tion of a system is such that the action functional

to

Sla®)] = /dt L(g,q,t) (6.2)

is an extremum, i.e. 6S = 0. Here, ¢ = {qy,...,q,} is a complete set of gener-
alized coordinates for our mechanical system, and

L=T-U (6.3)

is the Lagrangian, where T is the kinetic energy and U is the potential en-
ergy. Setting the first variation of the action to zero gives the Euler-Lagrange

equations,
momentum ps  force F,,

— ~=
dfory oL 6
dt\94,) — Oqr '

Thus, we have the familiar p, = F,, also known as Newton’s second law. Note,
however, that the {q,} are generalized coordinates, so p, may not have dimen-
sions of momentum, nor F, of force. For example, if the generalized coordinate
in question is an angle ¢, then the corresponding generalized momentum is the
angular momentum about the axis of ¢’s rotation, and the generalized force is
the torque.

6.2.1 Momentum Conservation

Whenever L is independent of a generalized coordinate g, the conjugate force
F = E?TLU vanishes and therefore the conjugate momentum p, = gTLU is conserved.
This is an example of a deep result known as Noether’s theorem which we
will explore more fully next week. Noether’s theorem guarantees that to every

continuous symmetry of L there corresponds an associated conserved quantity.
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6.2.2 Invariance of the Equations of Motion

Suppose

Ea.4.0) = Lig. 1) + 5 Gla.1) (6.5)
Then .
S1a(t)] = Slatt)] + Glay 1) ~ Gla ) - (6:6)

Since the difference S — S is a function only of the endpoint values {4,,q,}, their
variations are identical: §S = §S. This means that L and L result in the same
equations of motion. Thus, the equations of motion are invariant under a shift
of L by a total time derivative of a function of coordinates and time.

6.2.3 Remarks on the Order of the Equations of Motion

The equations of motion are second order in time. This follows from the fact
that L = L(q, ¢,t). Using the chain rule,

dfoLN_ oL . 9L 0L .
dt\d4q, ) ~ 94, 040 1 T g, 09, T Bt :

That the equations are second order in time can be regarded as an empirical
fact. It follows, as we have just seen, from the fact that L depends on ¢ and on
¢, but on no higher time derivative terms. Suppose the Lagrangian did depend
on the generalized accelerations § as well. What would the equations of motion
look like?

Taking the variation of S,

tp

- OL OL _. d (0L &
ofdt L(Qa q, 4, t) - [% 5QU + % 6QU - E (%) (5q0:|
o o o ta

ty
oL d (0L d*> [ OL
*/d’f{a—q;@(a—q)w(—a%)}é%‘ o
t

a

ta

The boundary term vanishes if we require d¢,(t,) = d¢,(tp) = 04,(t,) = I4,(t,) =
0V 0. The equations of motion would then be fourth order in time.
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6.2.4 Lagrangian for a Free Particle

For a free particle, we can use Cartesian coordinates for each particle as our sys-
tem of generalized coordinates. For a single particle, the Lagrangian L(x, v, 1)
must be a function solely of v?. This is because homogeneity with respect to
space and time preclude any dependence of L on « or on ¢, and isotropy of space
means L must depend on v2. We next invoke Galilean relativity, which says that
the equations of motion are invariant under transformation to a reference frame
moving with constant velocity. Let V' be the velocity of the new reference frame
K’ relative to our initial reference frame KC. Then @' = x —Vt, and v ' =v—V.
In order that the equations of motion be invariant under the change in reference
frame, we demand

L'(v') = L(v) + % G(x,t) . (6.9)

The only possibility is L = %mvz, where the constant m is the mass of the
particle. Note:

d dG
L'=imv-V)=imv*+ E(%mVQt —mV . a:) L+ pr (6.10)

For N interacting particles,

dx, )
Zm ( ) — U({ma}, {&a}) - (6.11)
Here, U is the potential energy. Generally, U is of the form

U= ZUl To)+ Y (e — Tw) | (6.12)

a<a’

however, as we shall see, velocity-dependent potentials appear in the case of
charged particles interacting with electromagnetic fields. In general, though,

L=T-U, (6.13)

where T is the kinetic energy, and U is the potential energy.

6.3 Remarks on the Choice of Generalized Co-
ordinates

Any choice of generalized coordinates will yield an equivalent set of equations of
motion. However, some choices result in an apparently simpler set than others.
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This is often true with respect to the form of the potential energy. Additionally,
certain constraints that may be present are more amenable to treatment using
a particular set of generalized coordinates.

The kinetic energy 7' is always simple to write in Cartesian coordinates, and
it is good practice, at least when one is first learning the method, to write T" in
Cartesian coordinates and then convert to generalized coordinates. In Cartesian
coordinates, the kinetic energy of a single particle of mass m is

T = 3m(i® + 3% + i) . (6.14)

If the motion is two-dimensional, and confined to the plane z = const., one of
course has T = Im (&% + ¢?).

Two other commonly used coordinate systems are the cylindrical and spher-
ical systems. In cylindrical coordinates (p, ¢, z), p is the radial coordinate in the
(x,y) plane and ¢ is the azimuthal angle:

T = pcoso i =cos¢p— psingo (6.15)
y=psing y=singp+pcosgg , (6.16)

and the third, orthogonal coordinate is of course z. The kinetic energy is

T = im (i 4 9 + i*)
Im (0*+ p? ¢* + 27) . (6.17)

When the motion is confined to a plane with z = const., this coordinate system
is often referred to as ‘two-dimensional polar’ coordinates.

In spherical coordinates (7,0, ), r is the radius, € is the polar angle, and
¢ is the azimuthal angle. On the globe, 6 would be the ‘colatitude’, which is
0 = 5 — A, where A is the latitude. le. § = 0 at the north pole. In spherical
polar coordinates,

x =1 sinf cos¢ T =sinf cos¢pr +r cosf cosqﬁé—rsin@singbqﬁ (6.18)
y =1 sinf sin ¢ §=sinf sing 7 +r cosd sing f +r sinf cos d ¢ (6.19)

z=r cosf i=cosOr—rsindf . (6.20)
The kinetic energy is

m (&% + g + 2%)
m (% +r? 0% + r? sin’0 ¢2) : (6.21)

= N
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6.4 How to Solve Mechanics Problems

Here are some simple steps you can follow toward obtaining the equations of
motion:

1. Choose a set of generalized coordinates {q,,...,q,}

2. Find the kinetic energy T'(q,q,t), the potential energy U(q,t), and the La-
grangian L(q,q,t) =T — U. It is often helpful to first write the kinetic energy
in Cartesian coordinates for each particle before converting to generalized co-
ordinates.

3. Find the canonical momenta p, = (.?TL and the generalized forces F, = E?TL'

4. Evaluate the time derivatives p, and write the equations of motion p, = F,.

Be careful to differentiate properly, using the chain rule and the Leibniz rule
where appropriate.

5. Identify any conserved quantities (more about this later).

6.5 Examples

6.5.1 One-dimensional motion

For a one-dimensional mechanical system with potential energy U(z),

L=T-U=3imi*-U(z) . (6.22)
The canonical momentum is
L
p= g_x =ma (6.23)
and the equation of motion is
d (0L oL . /

which is of course F' = ma.

Note that we can multiply the equation of motion by & to get

0= {ma’c' + U’(x)} - %{%mj:? + U(m)} - Cil—? , (6.25)

where E =T +U.
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6.5.2 Central force in two dimensions

Consider next a particle of mass m moving in two dimensions under the influence
of a potential U(p) which is a function of the distance from the origin p =
V2?2 + y%. Clearly cylindrical (2d polar) coordinates are called for:

L=1im(p*+p ¢2) —-U(p) . (6.26)

The equations of motion are

d (8L\ 9L o,

a(a—p)—ap = mp=mpg"—U'(p) (6.27)
A(OLN _OL e

E(a_gz’))% = - (mp®¢) =0. (6.28)

Note that the canonical momentum conjugate to ¢, which is to say the angular
momentum, is conserved:

Py = mp? ¢ = const. (6.29)
We can use this to eliminate ¢ from the first Euler-Lagrange equation, obtaining

P;

i ~U0) (6.30)

mp =

We can also write the total energy as

E=1im (p'2 + p? ¢2) +Ul(p)
35
1, »2 p U
from which it may be shown that E is also a constant:

dE [ . D3 b .
%—<mp—m—p3—|—U(/)))p—0. (6.32)

We shall discuss this case in much greater detail in the coming weeks.

6.5.3 A sliding point mass on a sliding wedge

Consider the situation depicted in Fig. 6.1, in which a point object of mass m
slides frictionlessly along a wedge of opening angle a. The wedge itself slides
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m

M

Figure 6.1: A wedge of mass M and opening angle « slides frictionlessly along a
horizontal surface, while a small object of mass m slides frictionlessly along the wedge.

frictionlessly along a horizontal surface, and its mass is M. We choose as gener-
alized coordinates the horizontal position X of the left corner of the wedge, and
the horizontal distance z from the left corner to the sliding point mass. The
vertical coordinate of the sliding mass is then y = x tan a,, where the horizontal
surface lies at y = 0. With these generalized coordinates, the kinetic energy is

T =iMX?+im (X +3)* + Imy?
=M+ m) X%+ mXi + im (14 tan’a) &> .
The potential energy is simply
U=mgy=mgx tan« .
Thus, the Lagrangian is
L=3(M+ m) X%+ mXi + im (14 tan’a)2* — mgx tana

and the equations of motion are

d(8L> _oL (M +m)X +mi=0

dt\ox) 0X
d (0L oL -
%<%> =0 = mX +m (1 +tan’a) i = —mgtana .
At this point we can use the first of these equations to write
m .
= — s
M+m

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

Substituting this into the second equation, we obtain the constant accelerations

M ' .
j:_( —l—m)gsn.lo;(sosa -
M + msin“a

mg sin o cos
M + msin’a
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(a+z,0)
k |
y=01" 50685808

. -

m
(x1,9)

Figure 6.2: The spring—pendulum system.
6.5.4 A pendulum attached to a mass on a spring

Consider next the system depicted in Fig. 6.2 in which a mass M moves hor-
izontally while attached to a spring of spring constant k. Hanging from this
mass is a pendulum of arm length ¢ and bob mass m.

A convenient set of generalized coordinates is (x, #), where x is the displace-
ment of the mass M relative to the equilibrium extension a of the spring, and
0 is the angle the pendulum arm makes with respect to the vertical. Let the
Cartesian coordinates of the pendulum bob be (zy,y;). Then

r,=a+x+{sinf |, y, =—lcosh . (6.39)
The kinetic energy is
T = {Mi? + im (i* + §°)
=1Mi*+1m [(m +Lcos00)? + (Esin&é)Q]
= XM +m)i® + Iml?0* + mlcos0i 0, (6.40)
and the potential energy is

U= %ka:Z + mgy,
= Lka® — mglcos? . (6.41)

Thus,

L=3YM+m)i*+ iml® 0% + mlcosf i — 1ka® + mgl cosf . (6.42)
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The canonical momenta are

oL

Pe = 52 = (M +m) i +mlcosf
L .
Py = 8_ =mlcosO i +ml*0 (6.43)
00
and the canonical forces are
oL
F,=—=-k
T or v
I .
F,= (2_9 = —mlsinf 6 — mgl sinf . (6.44)
The equations of motion then yield
(M 4 m) i+ ml cos# —ml sin 6% = —kz (6.45)
ml cosf i +ml*6 = —mgl sinf . (6.46)

Small Oscillations : If we assume both x and 6 are small, we may write sin 6 =~ 6
and cosf =~ 1, in which case the equations of motion may be linearized to

(M +m)&+mll+kx =0 (6.47)
mli+ml?0+mgld=0. (6.48)
If we define
uz% : az% , wSE% , wfz%, (6.49)
then
(I4+a)i4+ab+wiu=0 (6.50)
i+0+wif=0 6.51)

We can solve by writing

)0~
(0 0.

In order to have a nontrivial solution (i.e. without a = b = 0), the determinant
of the above 2 x 2 matrix must vanish. This gives a condition on w?, with
solutions

in which case

(wg+ (1 +a)wi) £ %\/(wg — w%)Q + 20 (Wi + wi) w? . (6.54)

N |=

2 _
Wy =
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Figure 6.3: The double pendulum, with generalized coordinates #; and 6. All motion
is confined to a single plane.

6.5.5 The double pendulum

As yet another example of the generalized coordinate approach to Lagrangian
dynamics, consider the double pendulum system, sketched in Fig. 6.3. We
choose as generalized coordinates the two angles 6, and 6,. In order to evaluate
the Lagrangian, we must obtain the kinetic and potential energies in terms of
the generalized coordinates {6,,6,} and their corresponding velocities {6, 6,}.

In Cartesian coordinates,

T = fmy (&7 + 97) + yma (5 + 93) (6.55)
U=migy, +mygy, . (6.56)

We therefore express the Cartesian coordinates {zy,y;, %, Y5} in terms of the
generalized coordinates {61,605}

x, =4 sinf, Ty =, sinf; + ¢, sin b, (6.57)
y, = —{; cosb, Yy = —L; cos@; —ly cosb, . (6.58)

Thus, the velocities are

i, = 0,0, cos, iy =0, 6, cosf, + l,0, cosb, (6.59)

g, = 010, sin 6, iy =€, 0, sinf, + (, 0, sinb, . (6.60)
Thus,

T=1lm, 262+ ng{@ 02 120, 0, cos(0, — 0,) 0, 0, + 12 ég} (6.61)

U=—m,gl, costy —mygl, costy —mygly cosb, , (6.62)
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and

L=T—U = L(my +my) 307 +myl, Ly cos(0;, — 0,) 0, 0, + Lm, (363

1
2

+ (my 4+ my) g€, cosby +mygly cosby . (6.63)

The generalized (canonical) momenta are

oL . .
P = Fv o (my +my) 50, + may €, £y cos(0;, — 6,) 0, (6.64)
1
oL : )
Py = pv =my by Uy cos(B; — 0) 01 +my 0560, , (6.65)
2

and the equations of motion are

Py = (my +my) E% él +my by £y cos(0; — 0,) 52 —my by Ly sin(0; — 0,) (61 - 92) 92

—(my 4+ my) g, sin@, —my , £, sin(6, — 0,) 61 6, = SQL (6.66)
1
and
Py = My Ly £y cos(t; — 0,) él — my by Ly sin(0; — 0,) (91 - 92) 91 + My g% é2
. L
2

We therefore find

my Uy my Uy

A 0, + cos(6, — 0,) 92 +

in(0, — 0,) 62 inf, =0 6.68
Ty + 11y My + My Sm(1 2) o +gsint, ( )

C, cos(B, — 0,) 6, + 0,0, — 0, sin(, —0,) 0% + g sinf, =0. (6.69)

Small Oscillations : The equations of motion are coupled, nonlinear second
order ODEs. When the system is close to equilibrium, the amplitudes of the
motion are small, and we may expand in powers of the 6, and 6,. The linearized
equations of motion are then

0, +aB0,+wib, =0 (6.70)

0,4+ 00, +w20, =0, (6.71)
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where we have defined

m
o 2

;B

Il
x‘\l IS
=

&

(=) \}

i

T g (6.72)
my + msy 4y

We can solve this coupled set of equations by a nifty trick. Let’s take a linear
combination of the first equation plus an undetermined coefficient, r, times the
second:

(1470, + (a+7)30, +w (0, +76,) =0 . (6.73)

We now demand that the ratio of the coefficients of 6, and 6, is the same as the
ratio of the coefficients of 6, and 6;:

(a+1r)B
1+7r

=r = r,=3B-1)=Ei/(1-p)2+4a8 (6.74)
When r = r, the equation of motion may be written

d? w?
@(91"’7}:92):_ 0

ol (6, +7y6,) (6.75)

and defining the (unnormalized) normal modes

&L= («91 +ry 92) , (6.76)

we find )

£, +uwié =0, (6.77)
with

Wo
W, = ——— . 6.78
SRV ey (O7%)

Thus, by switching to the normal coordinates, we decoupled the equations of
motion, and identified the two normal frequencies of oscillation. We shall have
much more to say about small oscillations further below.

For example, with ¢, = ¢, = ¢ and m; = m, = m, we have a = %, and
[ =1, in which case

g
re=td , L=0+%0, , w.=y2FV2 \/; (6.79)

Note that the oscillation frequency for the ‘in-phase’ mode &, is low, and that
for the ‘out of phase’ mode £_ is high.
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6.5.6 The Thingy

Four massless rods of length L are hinged together at their ends to form a
rhombus. A particle of mass M is attached to each vertex. The opposite
corners are joined by springs of spring constant k. In the square configuration,
the strings are unstretched. The motion is confined to a plane, and the particles
move only along the diagonals of the rhombus. Introduce suitable generalized
coordinates and find the Lagrangian of the system. Deduce the equations of
motion and find the frequency of small oscillations about equilibrium.

Solution

The rhombus is depicted in figure 6.4. Let a be the equilibrium length of the
springs; clearly L = \% Let ¢ be half of one of the opening angles, as shown.
Then the masses are located at (£X,0) and (0,£Y), with X = 75 cos¢ and
Y = \% sin ¢. The spring extensions are 0.X = 2X — a and 0Y = 2Y — a. The

Figure 6.4: The thingy: a rhombus with opening angles 2¢ and 7 — 2¢.
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kinetic and potential energies are therefore

T=M(X*+Y?)

= %.Ma2 P*
and
U=1k(6X)" + 1k (ov)?
= 1ka {( 2cos<z§—1) +(\/§sin¢—1)2}
= 1ka {3 cosgb—l—smgzﬁ)}
Note that minimizing U(¢) gives sin ¢ = cos ¢, i.e. Peq . The Lagrangian is
then

L=T-U-= %Ma2<é2+\/§ka2(cos¢+sin¢) + const.

The equations of motion are

ddL OL

523~ 56 Ma? ¢ = v/2ka® (cos ¢ — sin ¢)

It’s always smart to expand about equilibrium, so let’s write ¢ = 7 + 4, which
leads to )

§+wgsind =0,
with w, = /2k/M. This is the equation of a pendulum! Linearizing gives
d 4+ wg & = 0, so the small oscillation frequency is just wy,.

6.6 Conserved Quantities

A conserved quantity A(g, ¢, t) is one which does not vary throughout the motion
of the system. This means

A
ai . (6.80)

dt
q=q(t)

We shall discuss conserved quantities in detail in the chapter on Noether’s The-
orem, which follows.
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6.6.1 Momentum Conservation

The simplest case of a conserved quantity occurs when the Lagrangian does not
explicitly depend on one or more of the generalized coordinates, i.e. when

P9ty (6.81)
9o

We then say that L is cyclic in the coordinate g,. In this case, the Euler-

Lagrange equations p, = F say that the conjugate momentum p_ is conserved.

Consider, for example, the motion of a particle of mass m near the surface of

the earth. Let (z,y) be coordinates parallel to the surface and z the height. We

then have

T = im(i® + 9 + 2°) (6.82)
U=mgz (6.83)
L=T-U=1im(i®+ 9"+ %) — mgz . (6.84)

Since oL oL
xT ax an y ay ? ( )

we have that p, and p, are conserved, with

oL

Po =5z =

ma
These first order equations can be integrated to yield

x®:ﬂ®+%t,y@zmm+%t (6.87)

The z equation is of course
p,=mz=-mg=F,, (6.88)

with solution
2(t) = 2(0) + 2(0) t — 1gt* . (6.89)

As another example, consider a particle moving in the (z,y) plane under
the influence of a potential U(xz,y) = U(y/2% + y?) which depends only on the

particle’s distance from the origin p = y/x? + 2. The Lagrangian, expressed in
two-dimensional polar coordinates (p, ¢), is

L =3m(p* +p*d*) = Ulp) . (6.90)
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We see that L is cyclic in the angle ¢, hence

oL

= 8_¢ = mpe (6.91)

Py
is conserved. pg is the angular momentum of the particle about the z axis.
In the language of the calculus of variations, momentum conservation is what
follows when the integrand of a functional is independent of the independent
variable.

6.6.2 Energy Conservation

When the integrand of a functional is independent of the dependent variable,
another conservation law follows. For Lagrangian mechanics, consider the ex-
pression

H(Q? (L t) - Zpa QU - L. (692)
o=1
Now we take the total time derivative of H:
dH < oL oL oL
ald . T 6.93
o ;{paqa+paqa 30, O aqoqa} o (6.93)

We evaluate H along the motion of the system, which entails that the terms in
the curly brackets above cancel for each o:

oL _ oL

Pr =9, "7 o, (6.94)
Thus, we find
dH oL
—_— = —— 6.95
dt ot ’ ( )

which means that H is conserved whenever the Lagrangian contains no explicit
time dependence. For a Lagrangian of the form

L=>) imgl—Ur,...,ry), (6.96)

we have that p, = m,r,, and

a’ a’

H=T+U=Y tm+U(r,....,ry). (6.97)

However, it is not always the case that H = T' + U is the total energy, as we
shall see in the next chapter.

92



6.6.3 Appendix : Virial Theorem

The virial theorem is a statement about the time-averaged motion of a mechan-
ical system. Define the virial,

P)= Prts - (6.98)
Then

dG - Z paqa+paqo)
=>4, Fa—{—Z(jU% . (6.99)

Now suppose that T' = %Z(w, T, . 4,4, is homogeneous of degree k = 2 in ¢,
and that U is homogeneous of degree zero in q. Then

Z qg Z G, —— aq T, (6.100)

which follows from Euler’s theorem on homogeneous functions.

Now consider the time average of G over a period 7
[0y _ 1 ]dt 4G
dt T dt
_— [G(T) - G(O)} . (6.101)
If G(t) is bounded, then in the limit 7 — oo we must have (G) = 0. Any

bounded motion, such as the orbit of the earth around the Sun, will result in
(G) = 0. But then

<§> :2<T>+<ZqUFU>:O, (6.102)

T—00

which implies

T)= —%<ZU:%FU> = +<%;%§—Z>
- <%Zri'ViU(rl,...,rN)> (6.103)

k(U (6.104)
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where the last line pertains to homogeneous potentials of degree k. Finally,
since T'+ U = F is conserved, we have

= FE gy 2 2B (6.105)
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Chapter 7

Noether’s Theorem

7.1 Continuous Symmetry Implies Conserved
Charges

Consider a particle moving in two dimensions under the influence of an external
potential U(r). The potential is a function only of the magnitude of the vector
r. The Lagrangian is then

L=T-U=3m (P +r2¢*) - U(r), (7.1)

where we have chosen generalized coordinates (r, ¢). The momentum conjugate
to ¢ is py = mr?$. The generalized force F, clearly vanishes, since L does not
depend on the coordinate ¢. (One says that L is ‘cyclic’ in ¢.) Thus, although
r = r(t) and ¢ = ¢(t) will in general be time-dependent, the combination
Py = mr? ¢ is constant. This is the conserved angular momentum about the 2
axis.

In general, whenever the system exhibits a continuous symmetry, there is
an associated conserved charge. (The terminology ‘charge’ is from field theory.)
Indeed, this is a rigorous result, known as Noether’s Theorem. Consider a one-
parameter family of transformations,

4% — 4,(¢,€) (7.2)

where ( is the continuous parameter. Suppose further (without loss of gener-
ality) that at ¢ = 0 this transformation is the identity, i.e. ¢,(¢,¢) = ¢,. The
transformation may be nonlinear in the generalized coordinates. Suppose fur-
ther that the Lagrangian L s invariant under the replacement ¢ — ¢q. Then we
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must have

d . oL 04, oL 0q
0= L(q,q,w:——‘ ol e
@l . 94, 9| _, " 0in 0| _,
CA(OLY O] 0L (00
dt \ 0¢, )] OC o Iy dt \ OC ) -—g
d (0L 04,
_ E(a_qa 8_<;>< R (7.3)
Thus, there is an associated conserved charge
0L 04,
= — — ) (7.4)
04, OC|

7.1.1 Examples of one-parameter families of transforma-

tions

Consider the Lagrangian

L=1im(@@®+9*) - U(Va2+y?) . (7.5)

2

In two-dimensional polar coordinates, we have
L=1im(*+r%*) - U(r), (7.6)

and we may now define
HQ) =7
o) =0+C.

Note that 7#(0) = 7 and ¢(0) = ¢, i.e. the transformation is the identity when

¢ = 0. We now have
OL d¢

¢=0

L or :
oL or = mrie . (7.9)

9 oC

¢=0

Another way to derive the same result which is somewhat instructive is to

work out the transformation in Cartesian coordinates. We then have
(7.10)

Z(¢) =x cos( — y sin(
g(¢) =z sin( +y cos( . (7.11)
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Thus,

oz oy
8_C =—y(() 3_C = z(() (7.12)
and
oL a:z' oL 0 o
= — = = m(xy — yi) . (7.13)
0z 0C o dy ¢ o
But _
m(zy — yt) = mz-r x 1 =mrio . (7.14)
As another example, consider the potential
Ulp, ¢, 2) = V(p,a¢ + 2) (7.15)

where (p, ¢, z) are cylindrical coordinates for a particle of mass m, and where a
is a constant with dimensions of length. The Lagrangian is

am(p®+p°8" +4%) = V(p,ad + 2) . (7.16)

This model possesses a helical symmetry, with a one-parameter family

5O = p (7.17)
SC) = +¢ (7.18)
2(()=2z—Ca . (7.19)

Note that R
ap+ZzZ=ap+z, (7.20)

so the potential energy, and the Lagrangian as well, is invariant under this one-
parameter family of transformations. The conserved charge for this symmetry
is

0L 0p

oL oL 9¢ oL 0%
~9p OC

+ — + =
o 0¢ OC o 0z 0¢

We can check explicitly that A is conserved, using the equations of motion

A = mp’e — ma . (7.21)

¢=0

doL d, ,.. 0L oV
dog @) =55 T s (7:22)
doL d, . OL ov
Thus,
A= i(mpzé) —a i(mz) = (7.24)
dt dt ' '
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7.2 Conservation of Linear and Angular Mo-
mentum

Suppose that the Lagrangian of a mechanical system is invariant under a uniform
translation of all particles in the n direction. Then our one-parameter family
of transformations is given by

T,=x,+(n, (7.25)

and the associated conserved Noether charge is

A=n-P, (7.26)

where P =) p, is the total momentum of the system.

If the Lagrangian of a mechanical system is invariant under rotations about
an axis 1, then

T, = R(¢,n)x,
=z, +(nxx, +0(C), (7.27)

where we have expanded the rotation matrix R(¢,n) in powers of (. The con-
served Noether charge associated with this symmetry is

L
A:Z(fw.a-ﬁxxa:ﬁ-zwaxz)a:ﬁm, (7.28)

where L is the total angular momentum of the system.

7.3 Advanced discussion : Invariance of L wvs.
invariance of S

Observant readers might object that demanding invariance of L is too strict.
We should instead be demanding invariance of the action S'. Suppose S is
invariant under

t — i(q,t,0) (7.29)
q,(t) = 4,(¢,t,¢) - (7.30)

'Indeed, we should be demanding that S only change by a function of the endpoint values.
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Then invariance of S means
t, i,
s= [t = [ar@io. (7.31)
ta tq

Note that t is a dummy variable of integration, so it doesn’t matter whether
we call it t or . The endpoints of the integral, however, do change under
the transformation. Now consider an infinitesimal transformation, for which
ot =1t —tand §q = cj(ﬂ — q(t) are both small. Invariance of S means

t t,+ot,

oL - oL -
= [dtL 1, t) = dt< L it —0 — ¢ .32
S / (¢,4,t) / { (q,q,)+8qa Ut gg, 09 T } (7.32)
tq tat+0t,
where
SQU (t) = da (t) - qo‘(t)
= qva(tN) - qo_(i) + qa(t) - qo<t)
= 0q, — ¢, 0t + O(dq dt) (7.33)
Subtracting the top line from the bottom, we obtain
t,+dt,
oL |- oL |- oL d (0L -
—L 6t — L il e R (e
0= Bodty = Lodlat o | ow ~ g, | 2na ¥ J {aqg a (8%) } a(t)
tatotq
tb
d oL oL
= [dt — L——q |ot+—96 . 7.34
/ dt{( ) o+ o qﬁ} (739
tq
Thus, if ¢ = 4 is infinitesimal, and
ot = A(q,t)oC (7.35)

0¢, = B,(q,1) 6¢ ,
then the conserved charge is

oL . oL
A= (L= 52 ) A0+ 5 Bolant)

g

= — H(q,p,t) A(q.t) + p, B,(q,1) . (7.37)
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Thus, when A = 0, we recover our earlier results, obtained by assuming invari-
ance of L. Note that conservation of H follows from time translation invariance:
t — t+ ¢, for which A =1 and B, = 0. Here we have written

H=p,q,— L, (7.38)

and expressed it in terms of the momenta p,, the coordinates g,igma, and time
t. H is called the Hamiltonian.

7.3.1 The Hamiltonian

The Lagrangian is a function of generalized coordinates, velocities, and time.
The canonical momentum conjugate to the generalized coordinate g, is

oL

Py = a_q-g . (739)

The Hamiltonian is a function of coordinates, momenta, and time. It is defined
as the Legendre transform of L:

Let’s examine the differential of H:

oL oL oL
dH = 1, d dg, — —dq, — —dq, | — —dt
; <qU po’ +p0' qO' 8(]0 qo’ aqa qg> 8t
oL oL
= j,dp, — —d — —dt A1
EU: (qa Pr = G qa) o7 dt (7.41)

where we have invoked the definition of p_ to cancel the coefficients of dg,,. Since
p, = OL/0q,, we have Hamilton’s equations of motion,

4y = g—i . Do = —g—Z : (7.42)
Thus, we can write
dH =" ((jg dp, — p, dqg> . %—f dt . (7.43)
Dividing by dt, we obtain
(2—[3 = —%—? , (7.44)
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which says that the Hamiltonian is conserved (i.e. it does not change with time)
whenever there is no explicit time dependence to L.

Example #1 : For a simple d = 1 system with L = $m@? — U(z), we have
p = maz and
2
H:pi—L:%mxz—l—U(a:):;;—i-U(x). (7.45)
m

Example #2 : Consider now the mass point — wedge system analyzed above,
with

L=3(M+ m) X%+ mXi + im (14 tan’a)4® — mgx tan o (7.46)
The canonical momenta are

P=—""=(M+m)X +mi (7.47)

0X

oL -

p=e =mX +m (1 + tan’a) @ . (7.48)

@

The Hamiltonian is given by
H=PX +pi—1L

= LM +m)X* + mX7 + im (1 + tan’a) #* + mgz tana . (7.49)

However, this is not quite H, since H = H(X,xz, P,p,t) must be expressed
in terms of the coordinates and the momenta and not the coordinates and
velocities. So we must eliminate X and & in favor of P and p. We do this by
inverting the relations

(2]93) N (ant " m (1 +n1an2a)) ()x() (7.50)
to obtain

(ic() - m(M+(M1+ m) tan’a) (m(l J_r:r?nza) Mt m) (];) . (751)

Substituting into 7.49, we obtain

I M+m  P? cos’a Pp cos’a p?
 2m M4 msin’a M +msin’a 2(M +m sin’a)

+mgz tana . (7.52)

Notice that P = 0 since g—)]} = (. P is the total horizontal momentum of the

system (wedge plus particle) and it is conserved.
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732 IsH=T+4+U?

The most general form of the kinetic energy is
T=T,+T,+1T,
= 5T,00(0 1) dp G + T (0. 1) 4y + TO(g1) (7.53)

where T, (¢, ¢,t) is homogeneous of degree n in the velocities>. We assume a
potential energy of the form

U=U,+T,
= UM (g, 1) 4, +U(g,1) (7.54)

which allows for velocity-dependent forces, as we have with charged particles
moving in an electromagnetic field. The Lagrangian is then

L=T-U=3T20q,0) 4, 4y + T t) 4, + T (g,8) — UL (g,1) G, — UV (g, 1) -
(7.55)
We have assumed U (g, t) is velocity-independent, but the above form for L =
T —U is quite general. (E.g. any velocity-dependence in U can be absorbed into
the B, ¢, term.) The canonical momentum conjugate to g, is

bo = g = T+ T () — U 0,0 (7.56)
which is inverted to give
G =TS (py =T+ UL (7.57)
The Hamiltonian is then
H=p,4,— L
—1i7® (pg T U§1>) <p0, 7y U§P) ~ T, + U, (7.58)
=T,-T,+ U, . (7.59)

If T, T, and U, vanish, i.e. if T'(¢,q,t) is a homogeneous function of degree
two in the generalized velocities, and U(q, t) is velocity-independent, then H =
T + U. But if T}, or T} is nonzero, or the potential is velocity-dependent, then
H#T+U.

2A homogeneous function of degree k satisfies f(Axy,...,Ax,) = A\ f(z,...,2,). It is then easy

to prove Euler’s theorem, Y i, xi% = kf.
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m

Figure 7.1: A bead of mass m on a rotating hoop of radius a.

7.3.3 Example: A Bead on a Rotating Hoop

Consider a bead of mass m constrained to move along a hoop of radius a. The
hoop is further constrained to rotate with angular velocity w about the z-axis,
as shown in Fig. 7.1.

The most convenient set of generalized coordinates is spherical polar (7, 6, ¢),
in which case

T = %m(?'“Q + 7260 + rsin 0 ¢2)
= ima® (92 +w?sin0) . (7.60)

Thus, T, = %ma292 and T, = ima’w?sin®§. The potential energy is U(f) =
mga(1 — cos#). The momentum conjugate to 6 is p, = ma?6, and thus

H(87p):T2_TO+U

= %ma2é2 — ima’w? sin® 0 + mga(1 — cos0)

2
Py 1

=5 ima*w’sin® 0 + mga(1 — cos ) . (7.61)
ma

For this problem, we can define the effective potential

Ug(0) = U — Ty = mga(l — cos§) — tma’w?sin” 0
2
_ _ WY a2
= mga(l cos 6 207 sin (9) : (7.62)

where w, = g/a®. The Lagrangian may then be written

L= 1ma*0® — Ug(0) , (7.63)
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Figure 7.2: The effective potential Ue(0) = mga[l — cosf — 2 gin? 6]. (The di-

~ 2wg
mensionless potential Ueg(z) = Ueg/mga is shown, where x = 6/m.) Left panels:
w= % 3wp. Right panels: w = V3 wy.

and thus the equations of motion are

M= ——r . 64
ma“0 %0 (7.64)

Equilibrium is achieved when Ulg(#) = 0, which gives

OU,g o . w® _
50 —mgaSHl@{l—uTgCOSQ}—O, (7.65)

i.e. 0F =0, 0* = 7, or 0* = +cos™}(wi/w?), where the last pair of equilibria
are present only for w? > w2. The stability of these equilibria is assessed by
examining the sign of U%(0*). We have

2

" (0) = mga { cos — w_2 (2cos®6 — 1)} : (7.66)

wo
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Thus,

p

mga(l—i—i) at 0* =0
0

N

5(0%) =< —mga (1 + Z‘j—) at 0* =7

2
0

\

2 2
mga <5—§ — %) at 0" = £ cos™! (%) )

(7.67)

Thus, 0* = 0 is stable for w? < wi but becomes unstable when the rotation
frequency w is sufficiently large, i.e. when w? > w2. In this regime, there are two
new equilibria, at 6* = 4 cos™! (w3 /w?), which are both stable. The equilibrium
at 0* = m is always unstable, independent of the value of w. The situation is

depicted in Fig. 7.2.

7.4 Charged Particle in a Magnetic Field

Consider next the case of a charged particle moving in the presence of an elec-

tromagnetic field. The particle’s potential energy is
U(r)=qolr.t) =L A(r.1) -7,
c

1

which is velocity-dependent. The kinetic energy is T' = 5

(7.68)

m7?, as usual. Here

¢(r) is the scalar potential and A(r) the vector potential. The electric and

magnetic fields are given by

E=-V —1% , B=VxA.
c Ot

The canonical momentum is

oL
p:—_:mfi"+€A,
or c

and hence the Hamiltonian is
H(r,p,t)=p-7— L
=i+ A Ime?— LA p 4 g
c c

=imr*+q¢
= o (p—TArn) +aoirn).

- 2m

If A and ¢ are time-independent, then H (7, p) is conserved.
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Let’s work out the equations of motion. We have

d (0L oL
T (07) = o (7.72)
which gives
. gdA q .
m’r—i—C e qub—i—CV(A r), (7.73)
or, in component notation,
L qOA . q0A 06  q 0A; .
4+ L 4+ L = — Y 7.74
mxz—i_c&cj%—i_c ot qaxi—i_c@xixw (7.74)

06 _q0d; g (04; 0A
ox;,; ¢ Ot c

J
It is convenient to express the cross product in terms of the completely anti-

symmetric tensor of rank three, €,

0A
Bi = €, 3_x] ’ (7.76)
and using the result
€ijk Cimn = 6jm 5kn - 5jn 6km ) (777)
we have €, B; = 0; A; — 0, A;, and
. 8¢ q aAi q .
M= Ty T o e ki P (7.78)
or, in vector notation,
. qg0A q .
= - —=——+-= A
mT qVo Cat+cfr><(V>< )
—gE+%ixB, (7.79)
c

which is, of course, the Lorentz force law.

7.5 Field Theory: Systems with Several Inde-
pendent Variables

Suppose ¢,(x) depends on several independent variables: {z', 2% ... z"}. Fur-
thermore, suppose
S[{o@)] = [dwL(6,0,0,.2) . (7.50)
Q
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i.e. the Lagrangian density L is a function of the fields ¢, and their partial
derivatives d¢,/0z*. Here (2 is a region in RX. Then the first variation of S is

- oc oL 9o,
5S/dw{%5¢a+a(au¢a) - }

2

= d 2 _ |4 . - |
7{ - 0(0uPa) °% Q/ v {&pa dh (5’(%@5@)) } 0¢ (7.81)

o2

where 042 is the (n—1)-dimensional boundary of {2, X is the differential surface
area, and n* is the unit normal. If we demand 0L£/0(0,¢, =0of 5¢a|a(z =0,
the surface term vanishes, and we conclude

d¢a () - 0, Oz (8(@%)) : (7.82)

e

As an example, consider the case of a stretched string of linear mass density
w1 and tension 7. The action is a functional of the height y(z,t), where the
coordinate along the string, x, and time, ¢, are the two independent variables.
The Lagrangian density is

o\ 2 oy \2
=1, 022} 1022
eos(®) () -
whence the Euler-Lagrange equations are

oo 95 _ 0 oy 0 (or

~oy(x,t) Oz \ Oy ot \ 0y

oy 0y
02 'uﬁtQ’

(7.84)

where ' = g—g and y = %. Thus, pij = 7y”, which is the Helmholtz equation.
We've assumed boundary conditions where dy(x,,t) = dy(z,,t) = dy(x,t,) =

oy(z,t,) = 0.
The Lagrangian density for an electromagnetic field with sources is

L=—F, F" — J, A" (7.85)

167

The equations of motion are then

oL 9 ([ oL
9A” ~ 9xv \ D(0rAY)

> =0 = 0,F"™=dxJ", (7.86)
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which are Maxwell’s equations.

Recall the result of Noether’s theorem for mechanical systems:

(O8O ) _ (7.87)
dt (8% oC >CO
where ¢, = G,(q,() is a one-parameter ({) family of transformations of the
generalized coordinates which leaves L invariant. We generalize to field theory
by replacing
q,(t) — ¢u(x,1) (7.88)
where {¢,(x,t)} are a set of fields, which are functions of the independent

variables {x,y, z,t}. We will adopt covariant relativistic notation and write for
four-vector a* = (ct, z,y, z). The generalization of dA/dt = 0 is

0 oL 9,
Ozt \ 0 (0u¢a) OC
where there is an implied sum on both ;1 and a. We can write this as 9, J* = 0,
where

=0, (7.89)

¢=0

_OL D¢,
0(0uda) OC o
We call A = J°/c the total charge. If we assume J = 0 at the spatial boundaries

of our system, then integrating the conservation law d,, J* over the spatial region
Q) gives

0

(7.90)

dA

E:/d3x60J°:—/d?’xV-J:—j{dZﬁ,-J:O, (7.91)
Q Q o9

assuming J = 0 at the boundary 0f2.

As an example, consider the case of a complex scalar field, with Lagrangian
density?

This is invariant under the transformation 1 — €% 1), ¥* — e~ 1)*. Thus,
%%:zie%¢) | iﬁ — —ie (7.93)
and, summing over both ¢ and ¢* fields, we have
oL oL
= (1) + ——— - (—*
00 " B T
K * *
— (W — g o) (7.94)
3We raise and lower indices using the Minkowski metric 9 = diag (+,—, —, —).
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The potential, which depends on |¢|?, is independent of (. Hence, this form of
conserved 4-current is valid for an entire class of potentials.

7.5.1 Gross-Pitaevskii Model

As one final example of a field theory, consider the Gross-Pitaevskii model, with

h2
L= 2 gy g (0P ) (7.95)

This describes a Bose fluid with repulsive short-ranged interactions. Here ¢(x, t)
is again a complex scalar field, and ¥* is its complex conjugate. Using the
Leibniz rule, we have

0S[Y", ] = S[Y™ + 6y, ¢+5¢]
2 2
/dt/dd {nw h 69 —¢—h—V¢ Véw—h—vaw*-v¢
2m

~2g (WP — ng) (469 + waw}

/dt/dd H aw*+—v¢ (\¢]2—n0)w*}5w

[h%—f+—v2 29 ([ — ny) ¢ }61&*}7 (7.96)

where we have integrated by parts where necessary and discarded the bound-
ary terms. Extremizing S[¢*, 1] therefore results in the nonlinear Schridinger
equation (NLSE),

0 R’
i = g2y g 2g (02— mg) (7.97)
as well as its complex conjugate,
L OY" h? . )
—ih g; =3 V2" +2g (| — ng) " . (7.98)

Note that these equations are indeed the Euler-Lagrange equations:

0S5 oL 0 oL

o o (990) (799
S oL 0 oL

S0~ o0t Our (86uw*> | (7100)
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with z# = (¢, z)* Plugging in

oL oL oL n?

_ 2 * . * _ *
i 29 ([* —ng) ™, 550 =" 0 Fug = g VY (110D
and
J 9 oc oc R
a—w*—mw—%(\w, —no)w ) 33t¢*_0 5 8V¢*__%Vw’ (7.102)

we recover the NLSE and its conjugate.

The Gross-Pitaevskii model also possesses a U(1) invariance, under
(@, t) = D@ t) = (@, t) U@, t) - (@ t) = S, t) . (7.103)

Thus, the conserved Noether current is then

. 0L 09 oL
00, O o 00wt 00|
J? = —h [y (7.104)
h2
J =5 (V" Vi — V7). (7.105)

Dividing out by A, taking J° = —hp and J = —hj, we obtain the continuity
equation,

dp .
% iv.j=0, (7.106)
where "
p=UP . G=a (VYY) (7.107)

2im
are the particle density and the particle current, respectively.

4In the nonrelativistic case, there is no utility in defining z° = ct, so we simply define 20 = t.
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Chapter 8

Constraints

A mechanical system of N point particles in d dimensions possesses n = dN
degrees of freedom!. To specify these degrees of freedom, we can choose any
independent set of generalized coordinates {qi,...,qx}. Oftentimes, however,
not all n coordinates are independent.

Consider, for example, the situation in Fig. 8.1, where a cylinder of radius
a rolls over a half-cylinder of radius R. If there is no slippage, then the angles
0, and 6y are not independent, and they obey the equation of constraint,

R91 :a(92—91) . (81)

In this case, we can easily solve the constraint equation and substitute #y =
(1 + %) f;. In other cases, though, the equation of constraint might not be so
easily solved (e.g. it may be nonlinear). How then do we proceed?

8.1 Constraints and Variational Calculus

Before addressing the subject of constrained dynamical systems, let’s consider
the issue of constraints in the broader context of variational calculus. Suppose

we have a functional
xp

Fly(z)] = /d:cL<y,y',:c> , (5.2)

Ta

'For N rigid bodies, the number of degrees of freedom is n’ = $d(d 4+ 1)N, corresponding to d
center-of-mass coordinates and 1d(d — 1) angles of orientation for each particle. The dimension of
the group of rotations in d dimensions is %d(d — 1), corresponding to the number of parameters in
a general rank-d orthogonal matrix (i.e. an element of the group O(d)).
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Figure 8.1: A cylinder of radius a rolls along a half-cylinder of radius R. When there
is no slippage, the angles #; and 5 obey the constraint equation Rf; = a(fy — 61).

which we want to extremize subject to some constraints. Here y may stand for
a set of functions {y,(x)}. There are two classes of constraints we will consider:

1. Integral constraints: These are of the form

Ty

/dx N(y,y',z) =C,, (8.3)

Ta
where k labels the constraint.

2. Holonomic constraints: These are of the form

Gy, x) =0 (8.4)

The cylinders system in Fig. 8.1 provides an example of a holonomic constraint.
There, G(0,t) = R0; —a (A2 —0;) = 0. As an example of a problem with an
integral constraint, suppose we want to know the shape of a hanging rope of
fixed length C'. This means we minimize the rope’s potential energy,

Uly(z)] = Ag/bds y(z) = Ag/bdx y\1+y?, (8.5)

Ta
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where A is the linear mass density of the rope, subject to the fixed-length con-

straint
Ty Tp
:/ds:/dm/wy'?. (8.6)

Note ds = \/dx? + dy? is the differential element of arc length along the rope.
To solve problems like these, we turn to Lagrange’s method of undetermined
multipliers.

8.2 Constrained Extremization of Functions

Given F(zy,...,x,) to be extremized subject to k constraints of the form
Gj(x1,...,2,) =0 where j = 1,..., k, construct
F (2, 2 A, N) = Fy, .0, +Z)\ Gi(zy,...,x,) (8.7

which is a function of the (n + k) variables {xl, U S S /\k}. Now freely
extremize the extended function F™:

. = OF* OF*
dF™* = axa diL’o- + : a—>\J d)\] (88)
=1 Jj=1
Z( ZAJ&C )d +J21G d\; =0 (8.9)
This results in the (n + k) equations
OF <. G,
; = =1,... 1
. T Z)\] e =0 (=1..m) (8.10)
G;=0 (j=1,...,k). (8.11)

The interpretation of all this is as follows. The n equations in 8.10 can be
written in vector form as

k
VF+) VG =0. (8.12)

j=1

This says that the (n-component) vector VF' is linearly dependent upon the
k vectors V(. Thus, any movement in the direction of VF' must necessarily

113



entail movement along one or more of the directions VG;. This would require
violating the constraints, since movement along VG, takes us off the level set

G; = 0. Were VI linearly independent of the set {VG,}, this would mean that
we could find a differential displacement dx which has finite overlap with VF
but zero overlap with each VG ;. Thus @ +dx would still satisfy G;(x+dx) = 0,
but F' would change by the finite amount dF' = VF(x) - d.

8.3 Extremization of Functionals : Integral Con-
straints

Given a functional
Tp

Fl{ys(2)}] = /dx L({yo},{v,}. x) (c=1,...,n) (8.13)

ZTa

subject to boundary conditions dy,(z,) = dy,(z,) = 0 and k constraints of the

form
Tp

/del({yg},{y;},x) —C (l=1,...k), (8.14)
construct the extended functional
Tp

Pk O] = [ar {2 ), +ZAN{%} )} - Zw

Ta

(8.15)
and freely extremize over {y;,...,4,;A;,-..,Ax}. This results in (n + k) equa-
tions

oL d (0L i ON, d [ON,
a—%—@(%)dyl{a—%—@(%)}—o = b O

=

Ty

/d:ch({yU},{y;},x):Cl I=1,. k). (817)

La
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8.4 Extremization of Functionals : Holonomic
Constraints

Given a functional

Ty

Plno@)] = [@L{{w) ()a) (0 =Lom) (8.18)

Ta

subject to boundary conditions 0y, (x,) = dy,(x,) = 0 and k constraints of the
form

Gi({y,(z)}z) =0  (j=1,...,k), (8.19)
construct the extended functional

Tp

F @k ) = [t { L) 0)0) + SN 520

ZTa

and freely extremize over {yl, e Y A e )\k}:
Fo[ (oL d[OL\ <<~ G :
F = [d e A —2 0N p = 21
’ /x{;(ﬁya dw(ayé)+; jaya)éyUJr;G]é]} 052
resulting in the (n + k) equations
d (oL oL & 0aG,
el - = N —2 =1,... .22
I (ayé-) o~ 2Ny, T (522)
Gi({ys},2) =0  (=1,....k). (8.23)

8.4.1 Examples of Extremization with Constraints

Volume of a cylinder : As a warm-up problem, let’s maximize the volume V =
ma’h of a cylinder of radius a and height h, subject to the constraint

2
G(a, h) = 2ma + % —0=0. (8.24)

We therefore define

V*(a,h,\) =V (a,h) + XG(a,h) , (8.25)
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and set

ov =2rah + 27\ =0
da

ov* 9 h

o = Ta +2)\g—0
ov* h?

a/\ —27T(l+?—€—0.

Solving these three equations simultaneously gives

20 bl 27T 179 372
h=1]— /\:Wb/e/ ,

_ 2 v
57 5 7

a

Hanging rope : We minimize the energy functional

Ely(z)] = ug/dfvy\/1+y’2 :

4

T 52

22

(8.26)

(8.27)

(8.28)

(8.29)

(8.30)

where p is the linear mass density, subject to the constraint of fixed total length,

Cly(z)] = 72d:c VI1+y?.

Thus,

2

B [y(e).\] = Bly@)] +XC ()] = [do L0/,

1

with

Ly, v, z) = (ngy + \) /1 +y° .

Since % = 0 we have that

gy o HEA
o Ve
is constant. Thus,
j—‘z =77V (ugy +2)? - J2,
with solution ) 7 g
y(x) = g + g cosh (7 (x — a)) :
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(8.33)

(8.34)

(8.35)

(8.36)



Here, J, a, and \ are constants to be determined by demanding y(z;) = v;
(1 =1,2), and that the total length of the rope is C.

Geodesic on a curved surface : Consider next the problem of a geodesic on a
curved surface. Let the equation for the surface be

G(z,y,z)=0. (8.37)

We wish to extremize the distance,

b b
D= /ds = /\/dx2 +dy? + dz? . (8.38)

We introduce a parameter ¢ defined on the unit interval: ¢ € [0, 1], such that
z(0) = z,, ©(1) = x,, etc. Then D may be regarded as a functional, viz.

1

Dlz(t),y(t), 2(t)] = /dt 2+ g2+ 22 . (8.39)

We impose the constraint by forming the extended functional, D*:

D*[z(t),y(t), 2(t), A(t)] = /dt {\/iQ + 9%+ 224+ AG(z, v, z)} : (8.40)

0

and we demand that the first functional derivatives of D* vanish:

oD* d T oG
__4a o _ 41
5210 dt(ﬁugu%) A% =0 (84
5 D* d g ) aG
dy(t) dt (\/332 + 2 + 22 dy (8.42)
oD* d z oG
__a o _ 4
520 dt( —i2+92+22)+A82 0 (8.43)
oD*
— —0. 44
Thus’ . . . . . . . ..
)\(t):m:—azv_vy—yv_vz—zv (8.45)

v20,G v29,G  v20.G

with v = /2?2 + 92 + 22 and 0, = 6%, etc. These three equations are supple-
mented by G(z,y, z) = 0, which is the fourth.
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8.5 Application to Mechanics

Let us write our system of constraints in the differential form

> giolat)dg, + hi(g,t)dt =0 (=1,....k). (8.46)

o=1

If the partial derivatives satisfy

99ja _ 9gjo 7 99ja _ Oh; ’ (8.47)
aQU’ 8qa ot 8QJ
then the differential can be integrated to give dG(q,t) = 0, where
oG, 0G
Yjo g, 4 ot (8.48)

The action functional is

12

Slapl0)) = [dL{ahli))  (o=lo.m).  (849)

ta

subject to boundary conditions dq,(t,) = dq,(t,) = 0. The first variation of S

is given by
tp
~ | O0L d (0L
08 = [dt — = — =) 70 - 8.50
Jo s i) o 50

Since the {¢,(t)} are no longer independent, we cannot infer that the term in
brackets vanishes for each 0. What are the constraints on the variations dq, (¢)?
The constraints are expressed in terms of wvirtual displacements which take no
time: ot = 0. Thus,

> 95(a,1) 6q,(t) = 0. (8.51)
o=1
We may now relax the constraint by introducing & undetermined functions \; (%),

by adding integrals of the above equations with undetermined coefficient func-
tions to 65:

2 {g_ci - %(g—i) + 2N 65400, t)} 0q,(t) =0 (8.52)

o=1 j=1
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Now we can demand that the term in brackets vanish for all . Thus, we obtain
a set of (n + k) equations,

d (0L
i(5i) 2? ol th =, -

gja<q7 t) QU + hj (qa t) =0 ) (854)

in (n+ k) unknowns {ql, e s Ay e )\k}. Here, @, is the force of constraint
conjugate to the generalized coordinate q,. Thus, with

oL oL i
= F =_—— Q, = E A\ g, 8.55
po- aqa ) o aqa ) o ‘71 ] g]o' ) ( )

we write Newton’s second law as

p,=F, +Q, . (8.56)
Note that we can write
05 oL d (0L
a0~ 0~ i 3q) (597

and that the instantaneous constraints may be written

g;-0g=0 (j=1,...,k). (8.58)
Thus, by demanding
o5 4 Zk: Xg =0 (8.59)
6q<t) j=1 7 '

we require that the functional derivative be linearly dependent on the k vectors
g;.

8.5.1 Constraints and conservation laws

We have seen how invariance of the Lagrangian with respect to a one-parameter
family of coordinate transformations results in an associated conserved quantity
A, and how a lack of explicit time dependence in L results in the conservation
of the Hamiltonian H. In deriving both these results, however, we used the
equations of motion p, = F,. What happens when we have constraints, in
which case p, = F, +Q,7
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Let’s begin with the Hamiltonian. We have H = ¢, p, — L, hence

af (0 OLN. (s 9L, 0L
at ~ \Pe 7 g, )T \Pe T gy, )0 T

. oL
- Qa‘ 4 — E . (860)
We now use
QO’ (ja = )\] gja' QO' = _)\_7 h‘j (861)
to obtain il 5L
= —A by — 5 (8.62)

We therefore conclude that in a system with constraints of the form g;, 4,+h; =

0, the Hamiltonian is conserved if each h; = 0 and if L is not explicitly dependent
et

T
neither L nor any of the constraints G is explicitly time-dependent.

on time. In the case of holonomic constraints, h; = so H is conserved if

Next, let us rederive Noether’s theorem when constraints are present. We

assume a one-parameter family of transformations g, — ¢, (¢) leaves L invariant.
Then

dL _ 0L 94,  OL 4,
¢ 04, OC ~ 9G, 9¢

_(E A 8&0 ~ d ago
- (po - Qo) a_C +pa£(a_g)

Ry _ 4,
_ 4 (pa 3C) A S (8.63)

0=

Now let us write the constraints in differential form as

Gj0 dG, +h;dt +k;dC =0 . (8.64)
We now have A
= Ak (8.65)

which says that if the constraints are independent of ( then A is conserved. For
holonomic constraints, this means that

_0G;

G40, t) =0 = k= i 0, (8.66)

i.e. Gj(q~, t) has no explicit ( dependence.
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8.6 Worked Examples

Here we consider several example problems of constrained dynamics, and work
each out in full detail.

8.6.1 One cylinder rolling off another

As an example of the constraint formalism, consider the system in Fig. 8.1,
where a cylinder of radius a rolls atop a cylinder of radius R. We have two
constraints:

G(r,0,,0,)=r—R—a=0 (cylinders in contact) (8.67)
Gy(r,0,,0,) = RO, —a (0 —0,) =0 (no slipping) , (8.68)
from which we obtain the gj,:
1 0 0
Jjoc = (0 R+a _a> ) (869)
which is to say
9G, _ % T 8.70
87“ 891 602 ( )
G, oG, G,
9Gy _ 9% _ g T2 g, 8.71
ar go, ~ e a0, ~ " 8.71)
The Lagrangian is
L:T—U:%M(f2+r29f)+%I€§—Mgrcos€1, (8.72)

where M and [ are the mass and rotational inertia of the rolling cylinder,
respectively. Note that the kinetic energy is a sum of center-of-mass translation
T, = %M(?'“2 + 72 0%) and rotation about the center-of-mass, T, = %I@% The
equations of motion are

d (0L 0L ; 9 _

E(_ér) ~ 5 = M7 — Mro7+ Mgcosty = A\ =Q, (8.73)
a(—agl) ~ 20 Mr<0, + 2Mri0; — Mgrsinf; = (R4 a) Ay = Qy, (8.74)
d ([ OL oL s
i (87) s, 1= = 0 (8.75)
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To these three equations we add the two constraints, resulting in five equations
in the five unknowns {r, 01,05, A1, )\2}.

We solve by first implementing the constraints, which give r = (R +a) a
constant (i.e. 7 = 0), and 6 = (1 + %) ;. Substituting these into the above
equations gives

—~M(R+a)6?+ Mgcosf, =\ (8.76)
M (R + a)%0; — Mg(R+ a)sint, = (R+ a) A (8.77)
R )
I< a+ “)91 - (8.78)
From eqn. 8.78 we obtain
7. ;
)\2:——92:—}%—;&[01, (879)
a a
which we substitute into eqn. 8.77 to obtain
I . .
<M + 9) (R+a)*0 — Mg(R+a)sinf; =0 . (8.80)
Multiplying by 6;, we obtain an exact differential, which may be integrated to
yield
I\, My Mg o
%M(1+Ma2)9%+R+a00591:R+a00591. (8.81)

Here, we have assumed that 8; = 0 when 6, = 037, i.e. the rolling cylinder is
released from rest at 6; = 7. Finally, inserting this result into eqn. 8.76, we
obtain the radial force of constraint,

Mg
1+«

Q, = {(3 + ) cosf; — 2 cos 0;’} , (8.82)
where o = I/Ma? is a dimensionless parameter (0 < o < 1). This is the radial
component of the normal force between the two cylinders. When (), vanishes,
the cylinders lose contact — the rolling cylinder flies off. Clearly this occurs at
an angle 6, = 67, where

2 cos 02
0% = cos ! < 300:&1) . (8.83)

The detachment angle 07 is an increasing function of «, which means that larger
I delays detachment. This makes good sense, since when [ is larger the gain in
kinetic energy is split between translational and rotational motion of the rolling
cylinder.
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)-.
\ X
Figure 8.2: Frictionless motion under gravity along a curved surface. The skier flies
off the surface when the normal force vanishes.

8.6.2 Frictionless motion along a curve

Consider the situation in Fig. 8.2 where a skier moves frictionlessly under the
influence of gravity along a general curve y = h(z). The Lagrangian for this

problem is

L =1im(i®+¢*) — mgy (8.84)

and the (holonomic) constraint is
G(z,y) =y—h(z)=0. (8.85)

Accordingly, the Euler-Lagrange equations are

d (0L oL oG
E(aq}) T (550

where ¢, = x and ¢, = y. Thus, we obtain

mi=—-\h'(z) =Q, (8.87)
mj+mg=A=Q, . (8.88)

We eliminate y in favor of x by invoking the constraint. Since we need 3, we
must differentiate the constraint, which gives

y="n(x)s ij = h'(z) &+ h'(x)i* . (8.89)

Using the second Euler-Lagrange equation, we then obtain

% =g+h(x)i+h(v)i*. (8.90)
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Finally, we substitute this into the first E-L equation to obtain an equation for
x alone:

(1+Uﬂ@f)i+ﬁ@ﬂ#@ﬂ?+gﬁu)zo. (8.91)

Had we started by eliminating y = h(z) at the outset, writing
Lz, i) = %m(l + [1(2)] 2) i — mgh(z) (8.92)

we would also have obtained this equation of motion.

The skier flies off the curve when the vertical force of constraint @, = A
starts to become negative, because the curve can only supply a positive normal
force. Suppose the skier starts from rest at a height y,. We may then determine
the point x at which the skier detaches from the curve by setting A(z) = 0. To
do so, we must eliminate @ and Z in terms of . For Z, we may use the equation
of motion to write

h h R -2
i=— g—i-—ZZU ’ (8.93)
14+ n
which allows us to write 2
N=m LT (8.94)
1+ A
To eliminate x, we use conservation of energy,
E =mgy, = %m(l + h'2) i +mgh | (8.95)
which fixes
—h
2 =2 (M) ). 8.96
! ACEY (8.96)
Putting it all together, we have
mg
A@):?F:ﬁs{y+w?+m%—hww}. (8.97)

The skier detaches from the curve when A\(x) = 0, i.e. when
1+h% 420y, —h)h" =0. (8.98)
There is a somewhat easier way of arriving at the same answer. This is

to note that the skier must fly off when the local centripetal force equals the
gravitational force normal to the curve, i.e.

) =mg cosf(x) , (8.99)
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Figure 8.3: Finding the local radius of curvature: z = n?/2R.

where R(z) is the local radius of curvature. Now tanf = &, so cosf = (1 +

h’2)_1/2. The square of the velocity is v? = @2 4 9% = (1 + h’z) 2. What is
the local radius of curvature R(z)? This can be determined from the following
argument, and from the sketch in Fig. 8.3. Writing x = 2* + ¢, we have

y=h(z*)+h(z") e+ 30" (a*) €+ ... . (8.100)

We now drop a perpendicular segment of length z from the point (z,y) to the
line which is tangent to the curve at (x*, h(x*)) According to Fig. 8.3, this

means y
Nyt (MY, 1 (=
(y) = e (h’) Ve ( 1 ) ' (8.101)

Thus, we have
y="he+ %h”eZ
o (M) N h(M)
Vitn?) P \V14n?

:nh,+2h,2+ h”772

+0
Vit aewn O
, —
= M ; (8.102)
V14 h?
from which we obtain
h// 7,’2
=+ O (8.103)
2(1+ %)
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and therefore
3/2

- (1 + [h'(x)]2> . (8.104)

)= 5w

Thus, the detachment condition,

muv? m h" i?

= — et mg
R V1I+h? 1+ h?

reproduces the result from eqn. 8.94.

= mg cos 6 (8.105)

8.6.3 Disk rolling down an inclined plane

A hoop of mass m and radius R rolls without slipping down an inclined plane.
The inclined plane has opening angle o and mass M, and itself slides friction-
lessly along a horizontal surface. Find the motion of the system.

Figure 8.4: A hoop rolling down an inclined plane lying on a frictionless surface.

Solution : Referring to the sketch in Fig. 8.4, the center of the hoop is located
at

z=X-+5scosa—asinw

Yy =Ssina+acosa ,

where X is the location of the lower left corner of the wedge, and s is the distance
along the wedge to the bottom of the hoop. If the hoop rotates through an angle
0, the no-slip condition is af 4+ § = 0. Thus,

L= %MX2+ %m(m2 —I—gf) + %192 — mgy

I . .
= %<m+—2>52+ %(M+m)X2+mcosaXé—mgs sina — mga cos a .
a
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Since X is cyclic in L, the momentum
Py = (M +m)X +mcosas ,

is preserved: Py, = 0. The second equation of motion, corresponding to the
generalized coordinate s, is

I .
(1—|— —2)§+cosaX = —gsina .
ma

Using conservation of Py, we eliminate § in favor of X, and immediately obtain

- g sin o cos &
X = =ay .

(1 + %) (1 + mIaQ) — cos?

g(1+ %) sin o
aS
(14—%) <1+ 12> —cos?

The result

ma

follows immediately. Thus,
X() = X(0)+ X (0)t + Lta,t?
s(t) = s(0) + $(0) t + Sa,t* .
Note that a, < 0 while ay > 0, 7.e. the hoop rolls down and to the left as the

wedge slides to the right. Note that I = ma? for a hoop; we've computed the
answer here for general .

8.6.4 Pendulum with nonrigid support

A particle of mass m is suspended from a flexible string of length ¢ in a uniform
gravitational field. While hanging motionless in equilibrium, it is struck a hor-
izontal blow resulting in an initial angular velocity w,. Treating the system as
one with two degrees of freedom and a constraint, answer the following:

(a) Compute the Lagrangian, the equation of constraint, and the equations of mo-
tion.

Solution : The Lagrangian is
L= %m (7"2 +T292) -+ mgr cosf .
The constraint is » = . The equations of motion are
mit — mr 6> — mg cosf = \

mr? 6 4 2mri0 —mgsinf = 0 .
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(b)

(c)

(d)

Compute the tension in the string as a function of angle 6.

Solution : Energy is conserved, hence
sml? 0% — mgl cos § = sml? 02 — mgl cos b, .
We take 6, = 0 and 6, = w,. Thus,
0% = W —20° (1 —cosf) ,

with 2 = \/g/¢. Substituting this into the equation for A, we obtain

w2
A :mg{2—3c086— 9—02} .

Show that if w? < 2g/¢ then the particle’s motion is confined below the hori-
zontal and that the tension in the string is always positive (defined such that
positive means exerting a pulling force and negative means exerting a pushing
force). Note that the difference between a string and a rigid rod is that the
string can only pull but the rod can pull or push. Thus, the string tension must
always be positive or else the string goes “slack”.

Solution : Since 62 > 0, we must have

2

%21—6080.

The condition for slackness is A = 0, or
2
Wo 3
W =1- 5 COS 9 .
Thus, if w? < 262%, we have
o

1>
2022

>1—cos9>1—%cos€,

and the string never goes slack. Note the last equality follows from cosf > 0.
The string rises to a maximum angle

w?
O = 05 (1= 25)
mase = €08 2022

Show that if 2¢g/¢ < w2 < 5g/¢ the particle rises above the horizontal and the
string becomes slack (the tension vanishes) at an angle *. Compute 6*.
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(e)

Solution : When w? > 2022, the string rises above the horizontal and goes slack
at an angle
2
* -1(2 Wo
0" = cos (5 —392> :
This solution craps out when the string is still taut at ¢ = w, which means
2 2
wO — 59 .

Show that if w@ > 5g/¢ the tension is always positive and the particle executes
circular motion.

Solution : For w? > 522, the string never goes slack. Furthermore, 6 never
vanishes. Therefore, the pendulum undergoes circular motion, albeit not with
constant angular velocity.

8.6.5 Falling ladder

A uniform ladder of length ¢ and mass m has one end on a smooth horizontal
floor and the other end against a smooth vertical wall. The ladder is initially
at rest and makes an angle ¢, with respect to the horizontal.

¥

(x,y)

Y

X

Figure 8.5: A ladder sliding down a wall and across a floor.

(a) Make a convenient choice of generalized coordinates and find the Lagrangian.
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(o)

Solution : T choose as generalized coordinates the Cartesian coordinates (z,y)
of the ladder’s center of mass, and the angle 6 it makes with respect to the floor.
The Lagrangian is then

L:%m(:t2+92)+%[92+mgy.

There are two constraints: one enforcing contact along the wall, and the other
enforcing contact along the floor. These are written

Gi(z,y,0) =2 — 30 cosf =0
Ga(z,y,0) =y —2sinf=0.

Prove that the ladder leaves the wall when its upper end has fallen to a height
2Lsin6,. The equations of motion are

d(0L\ 0L oG,
ilor) —ae = Sh e

Thus, we have
mi=X\=0Q
my+mg =X =0,
16=210(\sind — N, cos0) =Q, .

xT

We now implement the constraints to eliminate x and y in terms of #. We have

i=—10sin00 i=—10cos06®—1lsingd

y:%écosﬁé y:—%6s1n092+%£00899.

We can now obtain the forces of constraint in terms of the function 6(t):
A= —%mé (sin@é + 008992)
Ay = —l—%mﬁ (cos@é — sin992) +mg .
We substitute these into the last equation of motion to obtain the result
16=—1,0— imgl cosf

or )
(1+a)f = —2uw; cosb ,

with I, = imf? o = I/I, and wy, = \/g/¢. This may be integrated once
(multiply by € to convert to a total derivative) to yield

M1 +a)f*+2w] sind = 2w sind, ,
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(c)

which is of course a statement of energy conservation. This,
P 4 w3 (sinfy — sin 0)
1+«

2w} cosf
1+«

0 =

We may now obtain A, (6) and \,(0):
mg . .
A (0) = 1ta (3sinf — 2sin6,) cosd

m

)‘2(‘9): 1+a

{(351110 — 2sinf,) sin@—f—oz} :

Demanding A, (#) = 0 gives the detachment angle 6 = 6, where

2

sinfy = $sind, .

Note that Ay (6,) = mga/(1 + «) > 0, so the normal force from the floor is
always positive for 6 > 6,. The time to detachment is

T1<90>_ d_-_ Lt

0o

/ df
6 2w Vsinfy —sinf

04

Show that the subsequent motion can be reduced to quadratures (i.e. explicit
integrals).

Solution : After the detachment, there is no longer a constraint G;. The equa-
tions of motion are

mi =0 (conservation of z-momentum)
my+mg=A
16 = —%f)\ cosf |

along with the constraint y = %E sinf. Eliminating y in favor of # using the
constraint, the second equation yields

A=mg— %mﬁ sin 6 6% + %mf cos 00 .
Plugging this into the third equation of motion, we find

16 =—21I,w2 cosf + I, sinf cos6* — I, cos’ 06 .
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(d)

Inf37]:= T[x_] := NIntegrate['\l (4/3) / (x-8in[y]) , {y, Arcsin[2x / 3], ArcSin[x] - 10'9}]/2

Inf38):= s8[x_] :=NIntegrate[
V(1+(a/3) (Cos[yl)~2) / ((1-(x/3)~2) x - Sin[y]) , {y, O, Arcsin[2x /3]}] /2

Inf39]:= Q[x_] :=T[x] +8[x]

Inf43]:= Plot[Q[x], {x, 0, 1}]

8

Figure 8.6: Plot of time to fall for the slipping ladder. Here x = sin 6.

Multiplying by 6 one again obtains a total time derivative, which is equivalent
to rediscovering energy conservation:

E=L(I+1, cos*0) 0% + 21, w3 sinf .

By continuity with the first phase of the motion, we obtain the initial conditions
for this second phase:

0 =sin~' (Zsin6,)

. sin 0,
0=—9 7
“o 3(1+a)
Thus,
, 4w?2 sin 6, _
E: %([—i—[o — %[0 sm290) . m —|—§mg€ SIHQO
sin®6y) .
= 2[0(,()8 . {1+ %H—Q}SIHQO .

Find an expression for the time 7'(f,) it takes the ladder to smack against the
floor. Note that, expressed in units of the time scale \/L/g, T is a dimensionless

function of 6,. Numerically integrate this expression and plot 1" versus 0,,.
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(e)

()

Solution : The time from detachment to smack is

1+ a cos?6
Tz(eo) = n 2 / 4 sin 00 . .
wo — e ) sin 6, — sin 6
The total time is then 7'(6,) = ) + T,(0,). For a uniformly dense ladder,

wli—\

I=35ml =11, s0 =3,
What is the horizontal velocity of the ladder at long times?

Solution : From the moment of detachment, and thereafter,

T = —%E sinf6 = 3(1’;4%@) sin®/26, .

Describe in words the motion of the ladder subsequent to it slapping against
the floor.

Solution : Only a fraction of the ladder’s initial potential energy is converted into
kinetic energy of horizontal motion. The rest is converted into kinetic energy of
vertical motion and of rotation. The slapping of the ladder against the floor is
an elastic collision. After the collision, the ladder must rise again, and continue
to rise and fall ad infinitum, as it slides along with constant horizontal velocity.

8.6.6 Point mass inside rolling hoop

Consider the point mass m inside the hoop of radius R, depicted in Fig. 8.7.
We choose as generalized coordinates the Cartesian coordinates (X,Y") of the
center of the hoop, the Cartesian coordinates (x,y) for the point mass, the angle
¢ through which the hoop turns, and the angle # which the point mass makes
with respect to the vertical. These six coordinates are not all independent.
Indeed, there are only two independent coordinates for this system, which can
be taken to be # and ¢. Thus, there are four constraints:

X—-—Rop=G,=0
Y-R=G,=0
r—X —Rsind0=G;=0
y—Y +Rcos0 =G, =0.

The kinetic and potential energies are easily expressed in terms of the Carte-

sian coordinates, aside from the energy of rotation of the hoop about its CM,
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()

Figure 8.7: A point mass m inside a hoop of mass M, radius R, and moment of inertia
I.

which is expressed in terms of ¢:
T=1M(X2+Y?) + Im(i? +9%) + 11 ¢ (8.110)
U= MgY +mgy . (8.111)
The moment of inertia of the hoop about its CM is I = MR?2, but we could
imagine a situation in which I were different. For example, we could instead

place the point mass inside a very short cylinder with two solid end caps, in
which case I = %M R?. The Lagrangian is then

L=1MX*+Y?) + im(i® +9°) + 11 * — MgY —mgy . (8.112)

Note that L as written is completely independent of 8 and 6!

Continuous symmetry

Note that there is an continuous symmetry to L which is satisfied by all the
constraints, under

X =X+¢ Y()=Y (8.113)
() =z+(¢ y(Q) =y (8.114)
JO=o+3 i) = (5115
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Thus, according to Noether’s theorem, there is a conserved quantity

oL oL 10L
0X 0t R 9¢

) I .
= MX +mi+ =0 (8.116)

This means A = 0. This reflects the overall conservation of momentum in the
ax-direction.

Energy conservation

Since neither L nor any of the constraints are explicitly time-dependent, the
Hamiltonian is conserved. And since T is homogeneous of degree two in the
generalized velocities, we have H = E =T + U:

E=IMX?*+Y?) + im(@® + %) + L1 6* + MgY +mgy . (8.117)

Equations of motion

We have n = 6 generalized coordinates and k = 4 constraints. Thus, there are
four undetermined multipliers {\;, Ao, A3, A4} used to impose the constraints.
This makes for ten unknowns:

X7Y7x7y7¢a97>\1a)\27>\3a)\4' (8118)

Accordingly, we have ten equations: six equations of motion plus the four equa-
tions of constraint. The equations of motion are obtained from

d(OL\ 0L <. 0G,
ii(50.) = " 2N 5 (S
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Taking each generalized coordinate in turn, the equations of motion are thus

MX =X — A (8.120)
MY = —Mg+ Xy — M\ (8.121)
mi = As (8.122)
my = —mg + A\ (8.123)
I¢=—RX\ (8.124)
0=—Rcosf A3 — Rsinf )\, . (8.125)

Along with the four constraint equations, these determine the motion of the
system. Note that the last of the equations of motion, for the generalized co-
ordinate g, = 0, says that ), = 0, which means that the force of constraint
on the point mass is radial. Were the point mass replaced by a rolling object,
there would be an angular component to this constraint in order that there be
no slippage.

Implementation of constraints

We now use the constraint equations to eliminate X, Y, z, and y in terms of
and ¢:

X=Rp , Y=R , xz=R¢p+Rsinf , y=R(l—cosh). (8.126)

We also need the derivatives:

i=R¢p+ RcosBf , i=R¢p+ Rcosff — Rsinf6? (8.127)
and . . .
y=Rsinff , &= Rsinbbh+ Rcoshb?, (8.128)
as Well aS . . .. .. . ..
X=R¢ , X=R¢p , Y=0, Y=0. (8.129)
We now may write the conserved charge as
1 . .
A= E(I+MR2+mR2)¢+chos99. (8.130)
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This, in turn, allows us to eliminate ¢ in terms of  and the constant A:

. y A .
_ N 131
) T (mR 90039) , (8.131)
where e
m
- 132
T Ty MR? (8.132)

The energy is then
E=3(I+MR?) 4§ +im(R*¢* + R*0° + 2R cos 0 ¢ 0) + MgR + mgR(1 — cos 0)

1+ vsin?6\ - 2g y A Y 2Mg
= ImR* | ——— 0P+ 2 (1 —cosb) + —— | — — > . (8.133
2™ 1+~ +R< COS)+1+7 mk) T mR ( )

The last two terms inside the big bracket are constant, so we can write this as

1+~sin?0\ ., 2g 4gk
—— 0"+ = (1 —cosb) = — . 134
< T+ ) +R( cos b)) i (8.134)

Here, k is a dimensionless measure of the energy of the system, after subtracting
the aforementioned constants. If k > 1, then 82 > 0 for all 8, which would result
in ‘loop-the-loop’” motion of the point mass inside the hoop — provided, that is,
the normal force of the hoop doesn’t vanish and the point mass doesn’t detach
from the hoop’s surface.

Equation motion for 6(¢)

The equation of motion for # obtained by eliminating all other variables from
the original set of ten equations is the same as E = 0, and may be written

14 vsin?0\ - vsin(‘)cos@) o g
— |+ | — O =—=. 8.135
( 147 ) ( 1+~ R ( )

We can use this to write 6 in terms of 62, and, after invoking eqn. 11.98, in
terms of 6 itself. We find

. 4g 1+~ i
6? = 2. [ ————— ) (k —sin?i0 8.136
R (1+vsin29)< s ) ( )
A g (1+7)sind 21 )
0=—=-—"—— |47y (k —sin“50) cosf + 1 + ysin“0| . 8.137
R (1+’ysin20)2 [ ( ? ) ! ] ( )
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Forces of constraint

We can solve for the A;, and thus obtain the forces of constraint @, = >, A, gif .
A3 = mi =mR ¢+ mRcoshh —mRsin 0 62
_mi [9 cosf — 6% sin 9} (8.138)
I+~
A1 = mij +mg = mg +mRsin0 6 + mR cos 0 6°
=mR [9 sinf + 6% sin 6 + %} (8.139)
A :_ié:M)\ (8.140)
"R mRz '
A= (M+m)g+mij=XI+ Mg . (8.141)

One can check that A3cos€ + Aysinf = 0.

The condition that the normal force of the hoop on the point mass vanish
is A3 = 0, which entails Ay = 0. This gives

—(1 + ysinf) cosf = 4(1 +7) (k — sin®16) . 8.142
2

Note that this requires cosf < 0, 7.e. the point of detachment lies above the
horizontal diameter of the hoop. Clearly if £k is sufficiently large, the equal-
ity cannot be satisfied, and the point mass executes a periodic ‘loop-the-loop’
motion. In particular, setting § = 7, we find that

1

k=14 -
¢ 4(1 4 ~)

(8.143)

If & > k., then there is periodic ‘loop-the-loop’ motion. If £ < k_, then the
point mass may detach at a critical angle 6*, but only if the motion allows for
cosf < 0. From the energy conservation equation, we have that the maximum
value of # achieved occurs when 6 = 0, which means

cosf .. =1—2k. (8.144)

If % < k < k,, then, we have the possibility of detachment. This means the
energy must be large enough but not too large.
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Chapter 9

Central Forces and Orbital
Mechanics

9.1 Reduction to a one-body problem

Consider two particles interacting via a potential U(ry, ry) = U(|r; —r,|). Such
a potential, which depends only on the relative distance between the particles,
is called a central potential. The Lagrangian of this system is then

L=T-U=3Im#{+imyp] —U(jr, —ry|) . (9.1)

9.1.1 Center-of-Mass (CM) and Relative Coordinates

The two-body central force problem may always be reduced to two indepen-
dent one-body problems, by transforming to center-of-mass (R) and relative
(r) coordinates (see Fig. 9.1), viz.

R=—*=°< rn=R+——F"——r (9.2)

my + Mo mi + Mo

my
r=r.—r ')":R——T' 93
1 2 2 my + mo ( )
We then have

L = gmyry® + gmyty® = U(|ry — 1) (94)
= IMR* + L1 — U(r) . (9.5)
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Figure 9.1: Center-of-mass (R) and relative () coordinates.

where
M =my + m, (total mass) (9.6)
mime
= reduced mass) . 9.7
p- ) 97)

9.1.2 Solution to the CM problem

We have dL/OR = 0, which gives R = 0 and hence
R(t) = R(0) + R(0)¢ . (9.8)

Thus, the CM problem is trivial. The center-of-mass moves at constant velocity.

9.1.3 Solution to the Relative Coordinate Problem

Angular momentum conservation: We have that £ = r X p = pur x 7 is a
constant of the motion. This means that the motion r(¢) is confined to a plane
perpendicular to £. It is convenient to adopt two-dimensional polar coordinates
(r,¢). The magnitude of £ is

0= pr*p =2uA (9.9)
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where dA = %7’20[@25 is the differential element of area subtended relative to the
force center. The relative coordinate vector for a central force problem subtends
equal areas in equal times. This is known as Kepler’s Second Law.

Energy conservation: The equation of motion for the relative coordinate is

d (0L OL . ou
%(E) =3 =  ur= - (9.10)

Taking the dot product with 7, we have

. . oUu
O=pr-r+—-r
or
d dE
dt{Z‘” +U(r )} == (9.11)

Thus, the relative coordinate contrlbution to the total energy is itself conserved.
The total energy is of course Eioy = F + 3 M R

Since £ is conserved, and since r - £ = 0, all motion is confined to a plane
perpendicular to £. Choosing coordinates such that 2z = £, we have

2

E =247+ U(r) = spr? + e U(r)
— L+ Ue(r) (9.12)
2
U (1) = +U(r) . (9.13)

2ur?

Integration of the Equations of Motion, Step I: The second order equa-
tion for r(t) is
dE 2 dU(r) AU (1)

@ P S . 9.14
dt - ur3 dr dr (9.14)

However, conservation of energy reduces this to a first order equation, via

f”—:l:\/l%(E—Ueff(T)> = dt= \/E\/ﬁdrU 5 (9.15)

This gives ¢(r), which must be inverted to obtain r(t). In principle this is
possible. Note that a constant of integration also appears at this stage — call it
ro =r(t =0).
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Integration of the Equations of Motion, Step II: After finding () one
can integrate to find ¢(t) using the conservation of ¢:

l l

p=— = dp= ) dt . (9.16)

This gives ¢(t), and introduces another constant of integration — call it ¢, =

ot =0).

Pause to Reflect on the Number of Constants: Confined to the plane per-
pendicular to £, the relative coordinate vector has two degrees of freedom. The
equations of motion are second order in time, leading to four constants of inte-
gration. Our four constants are I, ¢, 1y, and ¢,.

The original problem involves two particles, hence six positions and six
velocities, making for 12 initial conditions. Six constants are associated with
the CM system: R(0) and R(0). The six remaining constants associated with
the relative coordinate system are £ (three components), E, r,, and ¢,.

Geometric Equation of the Orbit: From ¢ = ,ur2gz'5, we have
d ¢ d
= = 9.17
dt  pr? de¢’ (9.17)
leading to
& 2 (dr\® prt
_2(Yy g 1
e r(dgb) 7 (r)+r (9.18)

where F(r) = —dU(r)/dr is the magnitude of the central force. This second
order equation may be reduced to a first order one using energy conservation:

E = %,w'“2 + Uz (1)

2 (drY
— w (@) + Ueﬁ(T) . (919)

Thus,
dr

l
- 4 ) :
V2 r2\/E — Ug(r)
which can be integrated to yield ¢(r), and then inverted to yield (¢). Note that
only one integration need be performed to obtain the geometric shape of the

orbit, while two integrations — one for r(t) and one for ¢(t) — must be performed
to obtain the full motion of the system.

do (9.20)
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It is sometimes convenient to rewrite this equation in terms of the variable
s=1/r

d?s 1% 1
W—FS:—@F(S ) - (9.21)

As an example, suppose the geometric orbit is r(¢) = ke, known as a loga-
rithmic spiral. What is the force? We invoke (9.18), with s”(¢) = o? s, yielding

2 C

F(s™h) =—=(14a% m s = F(r)= —3 (9.22)
with o
ol

The general solution for s(¢) for this force law is

Acosh(ag) + Bsinh(—ag)  if 2 > uC
s(¢) = (9.24)
A’ cos (|a|¢) + B’ sin (|a|¢) if 2 < uC .

The logarithmic spiral shape is a special case of the first kind of orbit.

9.2 Almost Circular Orbits

A circular orbit with r(t) = r, satisfies ¥ = 0, which means that Uls(r,) = 0,
which says that F(ry,) = —¢?/urs. This is negative, indicating that a circular
orbit is possible only if the force is attractive over some range of distances.
Since 7 = 0 as well, we must also have E = Ugg(r,). An almost circular orbit
has r(t) = r, + n(t), where |n/r,| < 1. To lowest order in 7, one derives the

equations
d 1
Wty - Ul(ry) (9.25)

If w? > 0, the circular orbit is stable and the perturbation oscillates harmon-
ically. If w? < 0, the circular orbit is unstable and the perturbation grows expo-
nentially. For the geometric shape of the perturbed orbit, we write r = r, + 7,
and from (9.18) we obtain

d*n ura
pr (g—;JF/(To)—i%)??:—ﬂQU, (9.26)
with
dIn F(r)
9
_g 4w 2
16} 3+ Ty (9.27)
"o
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Figure 9.2: Stable and unstable circular orbits. Left panel: U(r) = —k/r produces a
stable circular orbit. Right panel: U(r) = —k/r* produces an unstable circular orbit.

The solution here is
n(¢) = ny cos B(¢ — dy) (9.28)

where 7y and ¢, are initial conditions. Setting n = 7,, we obtain the sequence

of ¢ values
2mn

5
at which 7(¢) is a local maximum, i.e. at apoapsis, where r = r, + n,. Setting
r =1y — 1), is the condition for closest approach, i.e. periapsis. This yields the

identical set if angles, just shifted by «. The difference,
Ap= ¢y — 0, —2mn=2m(67"~1), (9.30)

is the amount by which the apsides (i.e. periapsis and apoapsis) precess during
each cycle. If § > 1, the apsides advance, i.e. it takes less than a complete
revolution A¢p = 27 between successive periapses. If 3 < 1, the apsides retreat,
and it takes longer than a complete revolution between successive periapses. The
situation is depicted in Fig. 9.3 for the case § = 1.1. Below, we will exhibit a
soluble model in which the precessing orbit may be determined exactly. Finally,
note that if § = p/q is a rational number, then the orbit is closed, i.e. it
eventually retraces itself, after every ¢ revolutions.

As an example, let F'(r) = —kr—®. Solving for a circular orbit, we write
k (>
! =———=0 9.31
eff(r) ro /”ﬂg ) ( )

which has a solution only for £ > 0, corresponding to an attractive potential.

We then find
020\ V/3-a)
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and 32 = 3 — a. The shape of the perturbed orbits follows from n” = —3?n.
Thus, while circular orbits exist whenever & > 0, small perturbations about
these orbits are stable only for 3* > 0, i.e. for @ < 3. One then has n(¢) =
Acos (¢ — ¢p). The perturbed orbits are closed, at least to lowest order in 7,
for « = 3 — (p/q)?, i.e. for B = p/q. The situation is depicted in Fig. 9.2, for
the potentials U(r) = —k/r (a« = 2) and U(r) = —k/r* (a = 5).

9.3 Precession in a Soluble Model

Let’s start with the answer and work backwards. Consider the geometrical orbit,

To

- 1—ecosPB¢p

Our interest is in bound orbits, for which 0 < e < 1 (see Fig. 9.3). What sort
of potential gives rise to this orbit? Writing s = 1/r as before, we have

s(¢) = sy (1 — ecos 39) . (9.34)

Substituting into (9.21), we have

r(o) (9.33)

H Ly s
—@ F(S ) = dT& + s
= #syecos B+ s
=(1-p0%)s+ s, (9.35)
from which we conclude L C
F(r)= 3 + el (9.36)
with
? 2
k=p%— , C=(pB*~-1)—. (9.37)
H M
The corresponding potential is
kC

where U_ is an arbitrary constant, conveniently set to zero. If p and C are

given, we have
2 C / e
= — 4 = =4/1+=. 9.39
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Figure 9.3: Precession in a soluble model, with geometric orbit r(¢) = ro/(1 —
e cos f¢), shown here with 5 = 1.1. Periapsis and apoapsis advance by A¢ =
27(1 — 371) per cycle.

When C = 0, these expressions recapitulate those from the Kepler problem.
Note that when ¢* + uC' < 0 that the effective potential is monotonically in-
creasing as a function of r. In this case, the angular momentum barrier is
overwhelmed by the (attractive, C' < 0) inverse square part of the potential,
and U.g(r) is monotonically increasing. The orbit then passes through the force
center. It is a useful exercise to derive the total energy for the orbit,

k2 2E(0* + uC)
E—(2_1) M 2o 9.40
(e )2(€2+MC) = = + e (9.40)
9.4 The Kepler Problem: U(r) = —kr~!
9.4.1 Geometric Shape of Orbits
The force is F'(r) = —kr~2, hence the equation for the geometric shape of the
orbit is P h
S M -1 H
W-FSZ—@F(S ):£_27 (9.41)
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Figure 9.4: The effective potential for the Kepler problem, and associated phase
curves. The orbits are geometrically described as conic sections: hyperbolae (E > 0),
parabolae (E = 0), ellipses (Fni, < E < 0), and circles (E = Eyn).

with s = 1/r. Thus, the most general solution is

5(9) = sy — Ccos(¢ = @) (9.42)

where C' and ¢, are constants. Thus,

"o
() — , 9.43
O = e (9.43)
where 7, = (*/uk and where we have defined a new constant € = C'r,.
9.4.2 Laplace-Runge-Lenz vector
Consider the vector
A=px€—pukr (9.44)
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where 7 = r/|r| is the unit vector pointing in the direction of ». We may now

show that A is conserved:

dA d
dt dt{pxe “k}
—pxlipxb— uk:”"_”
kr . T rr
:—ﬁx(,urxr) ,uk‘;—l—uk:ﬁ
:_MM+ kM_ k;+ﬂk:—§—0

(9.45)

So A is a conserved vector which clearly lies in the plane of the motion. A
points toward periapsis, i.e. toward the point of closest approach to the force

center.

Let’s assume apoapsis occurs at ¢ = ¢,. Then

A-r=—Arcos(¢ — ¢y) = 0* — pkr

giving
0? a(l — &2
r(¢) = = ( : ’
ik — Acos(p — @) 1 —ecos(¢p— ¢y)
where A 02
_ — 2 [ —
= a(l—e%) o

The orbit is a conic section with eccentricity . Squaring A, onefinds
A% = (p x £)® — 2uk? - p x £+ ji°k?

k
:p2£2 o 2/,L£2 v +M2k2
r

ko pk? puk?
—ou2( 2 F out?( B+ M
(Q;L T+2€2) ( +2€2
and thus
ok ), 2B
e T

9.4.3 Kepler orbits are conic sections

There are four classes of conic sections:
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e>1

O<ex<l1

Figure 9.5: Keplerian orbits are conic sections, classified according to eccentricity:
hyperbola (¢ > 1), parabola (e = 1), ellipse (0 < ¢ < 1), and circle (¢ = 0). The
Laplace-Runge-Lenz vector, A, points toward periapsis.

e Circle: ¢ =0, E = —pk?/20?, radius a = ¢*/uk. The force center lies at the
center of circle.

e Ellipse: 0 < e <1, —uk?/20*> < E < 0, semimajor axis a = —k/2E, semiminor
axis b = ay/1 — 2. The force center is at one of the foci.

e Parabola: ¢ =1, E = 0, force center is the focus.
e Hyperbola: ¢ > 1, E > 0, force center is closest focus (attractive) or farthest

focus (repulsive).

To see that the Keplerian orbits are indeed conic sections, consider the
ellipse of Fig. 9.6. The law of cosines gives

PP =1+ 4f* —drfcoso , (9.51)

where f = ea is the focal distance. Now for any point on an ellipse, the sum of
the distances to the left and right foci is a constant, and taking ¢ = 0 we see
that this constant is 2a. Thus, p = 2a — r, and we have

(2a —1r)? = 4a® — dar + 1r* = r* + 4e%a® — der cos ¢
= r(l—ecos¢) =a(l—e?). (9.52)
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¢ =0

Figure 9.6: The Keplerian ellipse, with the force center at the left focus. The focal
distance is f = €a, where a is the semimajor axis length. The length of the semiminor

axis is b = V1 — €2 a.

Thus, we obtain

a(l—g?)
r(@) = 1—ccos¢ (9:53)
and we therefore conclude that
> 9
rozﬁza(l—é). (9.54)
Next let us examine the energy,
E= %'Uf,ﬂ + Ue{T(r)
-1 i ﬁ ’ + 2 _ E
—2H ur? do 2urz
2 (ds\® 2
=— | — — 5" —k .
2u(d¢)+2,us s, (9.55)
with . i
s:;:%<1—5008¢> : (9.56)
Thus,
ds  puk |
P =pc sin ¢ | (9.57)
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Figure 9.7: The Keplerian hyperbolae, with the force center at the left focus. The
left (blue) branch corresponds to an attractive potential, while the right (red) branch
corresponds to a repulsive potential. The equations of these branches are r = p =
F2a, where the top sign corresponds to the left branch and the bottom sign to the
right branch.

and
2 27.2
(Z—;) = ,ugf e? sin’¢
prk2e? wk 2
T \e?
2, 24k PR
==+ sty (e2-1). (9.58)
Substituting this into eqn. 9.55, we obtain
pik?
E=35 (e —1). (9.59)

For the hyperbolic orbit, depicted in Fig. 9.7, we have r — p = F2a, de-
pending on whether we are on the attractive or repulsive branch, respectively.
We then have

(r £ 2a)?* = 4a® + dar + 1r* = r* + 4e%a® — der cos ¢

= 7r(£l+ecosg) =a(e* —1). (9.60)
This yields ,
_a(ef—1)
G R e — eoosd (9.61)
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9.4.4 Period of Bound Kepler Orbits

From ¢ = pr?¢ = 2uA, the period is 7 = 2uA/¢, where A = ma?y/T — €2 is the
area enclosed by the orbit. This gives

3\ 1/2 3\ 1/2
T=2m (%) =27 (G?_M) (9.62)
as well as 5 au
a

where k = Gm;m, and M = m; + m, is the total mass. For planetary orbits,
my = M, is the solar mass and m, = m,, is the planetary mass. We then have

3

72

(9.64)

_ <1+ mp>GM® ~ GM@
Mg/ 4Am? 472

which is to an excellent approximation independent of the planetary mass. (Note
that m /M ~ 1073 even for Jupiter.) This analysis also holds, mutatis mutan-
dis, for the case of satellites orbiting the earth, and indeed in any case where
the masses are grossly disproportionate in magnitude.

9.4.5 Escape Velocity

The threshold for escape from a gravitational potential occurs at £ = 0. Since
E =T +U is conserved, we determine the escape velocity for a body a distance
r from the force center by setting

_ G]\;[m V(1) = w ' (9.65)

When M > m, v (r) = \/2GM/r. Thus, for an object at the surface of the
carth, v, = v/2gRg = 11.2km/s.

9.4.6 Satellites and Spacecraft

A satellite in a circular orbit a distance h above the earth’s surface has an orbital

period
27

N (Rg + h)*? (9.66)

T =
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where we take m_, .. < My. For low earth orbit (LEO), h < Ry = 6.37x105m,
in which case T o = 2w/ Ry/g = 1.4 hr.

Consider a weather satellite in an elliptical orbit whose closest approach
to the earth (perigee) is 200 km above the earth’s surface and whose farthest
distance (apogee) is 7200 km above the earth’s surface. What is the satellite’s
orbital period? From Fig. 9.6, we see that

ypogee = Ric + 7200km = 13571 km

dorigee = Ry 4+ 200 km = 6971 km
@ = 3(dupogee T Aperigee) = 10071 km . (9.67)
We then have
a \3/2
= (R—) Tipo A2 2.65hr . (9.68)
E

What happens if a spacecraft in orbit about the earth fires its rockets?
Clearly the energy and angular momentum of the orbit will change, and this
means the shape will change. If the rockets are fired (in the direction of motion)
at perigee, then perigee itself is unchanged, because v - r = 0 is left unchanged

k.2
increases. This is the most efficient way of boosting a satellite into an orbit V&ffith
higher eccentricity. Conversely, and somewhat paradoxically, when a satellite
in LEO loses energy due to frictional drag of the atmosphere, the energy E
decreases. Initially, because the drag is weak and the atmosphere is isotropic,
the orbit remains circular. Since E decreases, (T') = —F must increase, which
means that the frictional forces cause the satellite to speed up!

at this point. However, E is increased, hence the eccentricity ¢ = (/1 + 250

9.4.7 Two Examples of Orbital Mechanics

e Problem #1: At perigee of an elliptical Keplerian orbit, a satellite receives an
impulse Ap = p,7. Describe the resulting orbit.

o Solution #1: Since the impulse is radial, the angular momentum £ = r x p is
unchanged. The energy, however, does change, with AFE = p2/2u. Thus,

2 ;2 o \?
2 f 2 Po
=1 = & -— ] . 9.69
T e €1+<uk) 909
The new semimajor axis length is
0%/ uk 1—¢?
tT 12 42
— & — &
S — (9.70)

1 — (wpf/pk)
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re(¢)

Figure 9.8: At perigee of an elliptical orbit 7;(¢), a radial impulse Ap is applied. The
shape of the resulting orbit r¢(¢) is shown.

The shape of the final orbit must also be a Keplerian ellipse, described by

o 1

r =—"- , 9.71
) = o T et 5 (9.71)

where the phase shift d is determined by setting

2 1
r(m) =re(m) = — - . 9.72
=0 = (972
Solving for 9, we obtain

6 =cos™" (g;/¢) - (9.73)

The situation is depicted in Fig. 9.8.

e Problem #2: Which is more energy efficient — to send nuclear waste outside the
solar system, or to send it into the Sun?

o Solution #2: Escape velocity for the solar system is v, o (r) = /GMg/r.
At a distance ag, we then have v .. . (ap) = V2 vg, where vy = /GMg /ag =
2mag /T = 29.9km/s is the velocity of the earth in its orbit. The satellite is
launched from earth, and clearly the most energy efficient launch will be one in
the direction of the earth’s motion, in which case the velocity after escape from
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Figure 9.9: The larger circular orbit represents the orbit of the earth. The elliptical
orbit represents that for an object orbiting the Sun with distance at perihelion equal
to the Sun’s radius.

earth must be u = (\/§ — 1)vE = 12.4km/s. The speed just above the earth’s
atmosphere must then be %, where
1o GMem

gMiU” — —p— =g, (9.74)
E

or, in other words,

~2 2 2
U =u +Uesc,E :

(9.75)
We compute @ = 16.7km/s.

The second method is to place the trash ship in an elliptical orbit whose peri-
helion is the Sun’s radius, R = 6.98 x 108 m, and whose aphelion is ay. Using
the general equation r(¢) = (¢2/uk)/(1 — ecos¢) for a Keplerian ellipse, we
therefore solve the two equations

M=) = Ro— ——. L (9.76)
=77) = = - —_— .
T 14 wk
1 02
r(gb—O)—aE—l_g'E. (9.77)
We thereby obtain
co T fe g9 (9.78)
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which is a very eccentric ellipse, and

(> a v? v?

—_——= X On c —

pk  G(Mg+m) 52
=(1— = —. 9.79
(1=eja; = 2 (9.79)

Hence,
2R

v = —2 4?2 (9.80)

ap + Ro °

and the necessary velocity relative to earth is

[ 2R,
= — 1 ~ —0.904 9.81
u ( 0n T R@ )UE Vg , ( )

i.e. u = —27.0km/s. Launch is in the opposite direction from the earth’s
orbital motion, and from @* = u® 4+ vZ,. ; we find & = —29.2km/s, which is
larger (in magnitude) than in the first scenario. Thus, it is cheaper to ship the
trash out of the solar system than to send it crashing into the Sun, by a factor

@22 = 0.327.

9.5 Mission to Neptune

Four earth-launched spacecraft have escaped the solar system: Pioneer 10 (launch
3/3/72), Pioneer 11 (launch 4/6/73), Voyager 1 (launch 9/5/77), and Voyager
2 (launch 8/20/77).! The latter two are still functioning, and each are moving
away from the Sun at a velocity of roughly 3.5 AU /yr.

As the first objects of earthly origin to leave our solar system, both Pioneer
spacecraft featured a graphic message in the form of a 6”7 x 9”7 gold anodized
plaque affixed to the spacecrafts’ frame. This plaque was designed in part by
the late astronomer and popular science writer Carl Sagan. The humorist Dave
Barry, in an essay entitled Bring Back Carl’s Plaque, remarks,

But the really bad part is what they put on the plaque. I mean, if we’re
going to have a plaque, it ought to at least show the aliens what we’re
really like, right? Maybe a picture of people eating cheeseburgers and
watching “The Dukes of Hazzard.” Then if aliens found it, they’d say,
“Ah. Just plain folks.”

!There is a very nice discussion in the Barger and Olsson book on ‘Grand Tours of the Outer
Planets’. Here I reconstruct and extend their discussion.
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HYPERFINE TRANSITION OF SILHOUETTE OF BINARY EQUIVALENT
MEUTRAL HYDROGEN SPACECRAFT OF DECIMAL 8

POSITION OF SUN PLANETS OF SOLAR
RELATIVE TO 14 SYSTEM- AND BINARY
PULSARS AND THE RELATIVE DISTANCES

CENTER OF THE GALAXY

Figure 9.10: The unforgivably dorky Pioneer 10 and Pioneer 11 plaque.

But no. Carl came up with this incredible science-fair-wimp plaque that
features drawings of — you are not going to believe this — a hydrogen atom
and naked people. To represent the entire Earth! This is crazy! Walk
the streets of any town on this planet, and the two things you will almost
never see are hydrogen atoms and naked people.

During August, 1989, Voyager 2 investigated the planet Neptune. A direct
trip to Neptune along a Keplerian ellipse with r, = a; = 1AU and 7, = ay =
30.06 AU would take 30.6 years. To see this, note that r, = a(1 —¢) and
r, =a(l+¢) yield

an — Qg

a=1(a,+ay)=1553AU0 , e= o 0.9356 . (9.82)
Thus,
3/2
r=1lr. (ai) —30.6yr . (9.83)
E

The energy cost per kilogram of such a mission is computed as follows. Let the
speed of the probe after its escape from earth be v, = Avg, and the speed just
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above the atmosphere (i.e. neglecting atmospheric friction) is v,. For the most
efficient launch possible, the probe is shot in the direction of earth’s instanta-
neous motion about the Sun. Then we must have

L o GMgm

m(\—1)2v2 (9.84)

1
2" Yo Ry 2
since the speed of the probe in the frame of the earth is v, — vy = (A — 1) vg,
Thus,

E
=g = [JA -1+ A (9:85)
M
v = Mo _ 6.4 107 J/kg |
Qg
where M
a
h=—".—="7050x10"%. 9.86
. R (9.86)
Therefore, a convenient dimensionless measure of the energy is
2 v?
= =2 =(A-172+2h. 9.87
=== (987)

As we shall derive below, a direct mission to Neptune requires

A 2ay

=1.3913 , (9.88)
ay + ag

which is close to the criterion for escape from the solar system, A\, = V2. Note

that about 52% of the energy is expended after the probe escapes the Earth’s

pull, and 48% is expended in liberating the probe from Earth itself.

This mission can be done much more economically by taking advantage of
a Jupiter flyby, as shown in Fig. 9.11. The idea of a flyby is to steal some of
Jupiter’s momentum and then fly away very fast before Jupiter realizes and gets
angry. The CM frame of the probe-Jupiter system is of course the rest frame of
Jupiter, and in this frame conservation of energy means that the final velocity
u,; is of the same magnitude as the initial velocity u,. However, in the frame
of the Sun, the initial and final velocities are v, + u; and v, + u;, respectively,
where v; is the velocity of Jupiter in the rest frame of the Sun. If, as shown in
the inset to Fig. 9.11, u; is roughly parallel to v,, the probe’s velocity in the
Sun’s frame will be enhanced. Thus, the motion of the probe is broken up into
three segments:

[: Earth to Jupiter
IT: Scatter off Jupiter’s gravitational pull
III:  Jupiter to Neptune
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Figure 9.11: Mission to Neptune. The figure at the lower right shows the orbits
of Earth, Jupiter, and Neptune in black. The cheapest (in terms of energy) direct
flight to Neptune, shown in blue, would take 30.6 years. By swinging past the planet
Jupiter, the satellite can pick up great speed and with even less energy the mission
time can be cut to 8.5 years (red curve). The inset in the upper left shows the
scattering event with Jupiter.

We now analyze each of these segments in detail. In so doing, it is useful to
recall that the general form of a Keplerian orbit is

7"(¢):L d:£:|52—1]a. (9.89)
1—ccos¢p ' uk
The energy is
E=(*-1) ke (9.90)
2027

with & = GMm, where M is the mass of either the Sun or a planet. In either
case, M dominates, and p = Mm/(M + m) ~ m to extremely high accuracy.
The time for the trajectory to pass from ¢ = ¢, to ¢ = ¢, is

$2 $2 P2
dp p 2 e do
/t /gb K¢/¢r (9) MkQ(/[l—ECOS¢]2 (5:9)
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For reference,

a, =1AU a, =520AU ay = 30.06 AU

M_ =5.972 x 10** kg M, =1.900 x 10*" kg M, = 1.989 x 10 kg

with 1 AU = 1.496 x 10°km. Here ay,y and M, are the orbital radii and
masses of Earth, Jupiter, and Neptune, and the Sun. The last thing we need to

know is the radius of Jupiter,

R, = 9.558 x 107 AU .

We need R; because the distance of closest approach to Jupiter, or perijove,

must be R; or greater, or else the probe crashes into Jupiter!

9.5.1 I. Earth to Jupiter

The probe’s velocity at perihelion is v, = Avg. The angular momentum is

{ = pag - A\vg, whence
(agAvg)? — 24

d= .
GM, e

From r(7) = ag, we obtain
e, =M —1.

This orbit will intersect the orbit of Jupiter if 7, > a,, which means

d >a, = A> 24,

Z = 1.2952 .
1—¢ a; + ag

If this inequality holds, then intersection of Jupiter’s orbit will occur for

B [ a;— Nag
¢J = 27 — cos (m) .

Finally, the time for this portion of the trajectory is

g
dé 1

=T /27T [1—()@—1)0089%)}2 .

™
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9.5.2 II. Encounter with Jupiter

We are interested in the final speed v; of the probe after its encounter with
Jupiter. We will determine the speed v; and the angle ¢ which the probe makes
with respect to Jupiter after its encounter. According to the geometry of Fig.
9.11,

vi = v? + u? — 2uw, cos(X + ) (9.97)

V2 4+ v —u?
§=—2_1 - 9.98
coS S0, ( )

Note that oM
2 ©} g 9

— - . . 9.99
vy o e (9.99)

But what are u, X, and ~?
To determine u, we invoke
u? = v? + v — 2u,v;c08 3 . (9.100)

The initial velocity (in the frame of the Sun) when the probe crosses Jupiter’s
orbit is given by energy conservation:

GM@TTL 1 2 GM@m

Im(Avy,)? — Imo; 9.101
b - S22 — g - SR (9.101)
which yields
2
V2 = ()\2 24 ﬂ) V2 (9.102)
Qy
As for 3, we invoke conservation of angular momentum:
p(v;,cos B)a; = p(Avg)ay = wvcosff=A e Vg - (9.103)
aj;
The angle v is determined from
v, = v;co8 3 +ucosy . (9.104)

Putting all this together, we obtain

v = v VA2 — 24 21 (9.105)

u= v,V A2 — 2+ 3z — 23/ (9.106)

VI — A
VA2 — 243z — 2232

cosy = (9.107)
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where

s

Tr =

= =0.1923 . (9.108)

Q;

We next consider the scattering of the probe by the planet Jupiter. In the
Jovian frame, we may write

KR, (1 + 5J)
=2 9.109
where perijove occurs at
r(0) = kR, . (9.110)

Here, x is a dimensionless quantity, which is simply perijove in units of the
Jovian radius. Clearly we require x > 1 or else the probe crashes into Jupiter!
The probe’s energy in this frame is simply £ = %muz, which means the probe
enters into a hyperbolic orbit about Jupiter. Next, from

ke?—1
52

we find

e =1+ m(%) (]\]\42) (%)2 . (9.113)

The opening angle of the Keplerian hyperbola is then ¢, = cos™! (6;1), and the
angle X is related to ¢, through

X:7T—2(;5C:7T—2(30S1<€l> : (9.114)
3
Therefore, we may finally write
vp = \/xvg + u2 + 2uvg/x cos(2¢c — ) (9.115)
cosd = M (9.116)

2 V¢ Ug\/T

9.5.3 III. Jupiter to Neptune

Immediately after undergoing gravitational scattering off Jupiter, the energy
and angular momentum of the probe are

GM@m

Qg

E = imuf — (9.117)
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time (vears)

1.3 1.35 1.4 1.45 1.5
speed at perihelion A=v,/v,

Figure 9.12: Total time for Earth-Neptune mission as a function of dimensionless
velocity at perihelion, A = v,/vg. Six different values of x, the value of perijove in
units of the Jovian radius, are shown: x = 1.0 (thick blue), k = 5.0 (red), k = 20
(green), k = 50 (blue), x = 100 (magenta), and x = oo (thick black).

and
= pvpa,cosd . (9.118)
We write the geometric equation for the probe’s orbit as
d
= 9.119
(@) 1+ecos(¢p—o¢;—a)’ ( )
where , )
l )
d:——:(ﬁﬁEE)aE. (9.120)
wk Vg Ug

Setting F = (uk?/2(?)(e? — 1), we obtain the eccentricity

2
e= 1+<ﬁ—2%>i. (9.121)

2
vg  ay; ) ag
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Note that the orbit is hyperbolic — the probe will escape the Sun —if v; > vy V2.
The condition that this orbit intersect Jupiter at ¢ = ¢, yields

cos o = 1<i - 1) : (9.122)

e\ ay

which determines the angle a.. Interception of Neptune occurs at

d 1/ d
= = = - —-=1). (9.123
1+ ecos(odn — ¢y — ) I On = @3+ ot cos 5(aN ) ( )
We then have
aV T 1

Tin = Tg " (_> /_925 5 - (9.124)

g : 21 [1+ecos(¢p — ¢y — a)]

J
The total time to Neptune is then the sum,

Ten = Tey T Tow - (9.125)

In Fig. 9.12, we plot the mission time 7y versus the velocity at perihelion,
v, = Avg, for various values of k. The value k = oo corresponds to the case of
no Jovian encounter at all.
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Chapter 10

Small Oscillations

10.1 Coupled Coordinates

We assume, for a set of n generalized coordinates {qi, ..., ¢,}, that the kinetic
energy is a quadratic function of the velocities,
T=1T _(ar,-- a,) 4y - (10.1)

where the sum on ¢ and ¢’ from 1 to n is implied. For example, expressed in
terms of polar coordinates (r, 6, ¢), the matrix T}; is

1 0 0

T..,=m|0 r? 0 — T=1im(P+ 26 + 1% sin0 ¢2) . (10.2)
0 0 7r%sin®

The potential U(qy, .. .,q,) is assumed to be a function of the generalized coor-

dinates alone: U = U(q). A more general formulation of the problem of small
oscillations is given in the appendix, section 10.8.

The generalized momenta are

oL
=—=T .4, 10.3
pU aq'a oo qO’ ( )
and the generalized forces are
aL 1 8T Y aU
F_ = =——""qG., 4, — — . 10.4
o 8Q¢7 2 8(]0 qa qa aqo_ ( )

The Euler-Lagrange equations are then p, = F, or
Moo 1 0T pon\ . . ou
T/“/‘i_ - = ’ "= 5 10.5
oot s ( 90, 2 og )qa G = B (10.5)

which is a set of coupled nonlinear second order ODEs.
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10.2 Expansion about Static Equilibrium

Small oscillation theory begins with the identification of a static equilibrium

{q,-..,q,}, which satisfies the n nonlinear equations
ou
9o lg=q

Once an equilibrium is found (note that there may be more than one static
equilibrium), we expand about this equilibrium, writing

9o =45+ 1y - (10.7)
The coordinates {7, ...,n,} represent the displacements relative to equilibrium.

We next expand the Lagrangian to quadratic order in the generalized dis-
placements, yielding

L = %TO'O'/ 7:’0' 770” - %Vao" 770'770-’ ) (108)
where
0°T o2l
oo’ T 3 . ) oo’ T (109>
aqCT aqg" _ aqo. aqo_/ _
=1 a=q
Writing n* for the row-vector (7, ...,n,), we may suppress indices and write
L=30"Tn—5n'Vn, (10.10)

where T and V are the constant matrices of eqn. 10.9.

10.3 Method of Small Oscillations

The idea behind the method of small oscillations is to effect a coordinate trans-
formation from the generalized displacements 1 to a new set of coordinates &,
which render the Lagrangian particularly simple. All that is required is a linear
transformation,

Ne = Agi&i s (10.11)
where both ¢ and ¢ run from 1 to n. The n xn matrix A, is known as the modal
matriz. With the substitution n = A€ (hence n* = €' A", where A% = A_ is
the matrix transpose), we have

L=1¢ANTAE-LeAVAE. (10.12)

2
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We now choose the matrix A such that

ATA=1 (10.13)
A'VA = diag (w7, ..., w]) . (10.14)

n

With this choice of A, the Lagrangian decouples:

n

L=1Y (&-uw?e), (10.15)
i=1
with the solution
&i(t) = C; cos(w; t) + D;sin(w; t) , (10.16)
where {C1,...,C,} and {Dy, ..., D, } are 2n constants of integration, and where

no sum is implied on i. Note that

E=A"'p=A"Tn. (10.17)
In terms of the original generalized displacements, the solution is
n,(t) = Z A, {C’i cos(w;t) + D, sin(wit)} , (10.18)
i=1

and the constants of integration are linearly related to the initial generalized
displacements and generalized velocities:

Oi - Atia TO'U’ 7]0’(0> (1019)
D, = wi_lAtw T, . 7'70,(0) , (10.20)

again with no implied sum on ¢ on the RHS of the second equation, and where
we have used A~! = A'T, from eqn. 10.13. (The implied sums in eqn. 10.20
are over o and o'.)

Note that the normal coordinates have unusual dimensions: [£] = VM - L,
where L is length and M is mass.

10.3.1 Can you really just choose an A so that both these
wonderful things happen in 10.13 and 10.147

Yes.
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10.3.2 Er...care to elaborate?

Both T and V are symmetric matrices. Aside from that, there is no special
relation between them. In particular, they need not commute, hence they do not
necessarily share any eigenvectors. Nevertheless, they may be simultaneously
diagonalized as per 10.13 and 10.14. Here’s why:

e Since T is symmetric, it can be diagonalized by an orthogonal transformation.

That is, there exists a matrix O; € O(n) such that
O|TO, =Ty, (10.21)

where T4 is diagonal.

We may safely assume that T is positive definite. Otherwise the kinetic energy
can become arbitrarily negative, which is unphysical. Therefore, one may form
the matrix T;l/ ? which is the diagonal matrix whose entries are the inverse
square roots of the corresponding entries of T4. Consider the linear transfor-
mation O, T;l/z. Its effect on T is

T;'?0tTO, T;'* =1. (10.22)
Since O, and T4 are wholly derived from T, the only thing we know about
v=1,"?0'vo, ;" (10.23)

is that it is explicitly a symmetric matrix. Therefore, it may be diagonalized by
some orthogonal matrix O, € O(n). As T has already been transformed to the
identity, the additional orthogonal transformation has no effect there. Thus, we
have shown that there exist orthogonal matrices O, and O, such that

oLt ?otTo, T,'?0,=1 (10.24)
OLT POtV O, T 0, = diag (W2, ... ,w?) . (10.25)

n

All that remains is to identify the modal matrix A = O, Tgl/ 20,

Note that it is not possible to simultaneously diagonalize three symmetric ma-
trices in general.
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10.3.3 Finding the Modal Matrix

While the above proof allows one to construct A by finding the two orthogonal
matrices O; and O,, such a procedure is extremely cumbersome. It would be
much more convenient if A could be determined in one fell swoop. Fortunately,
this is possible.

We start with the equations of motion, Tn + Vn = 0. In component
notation, we have
TUO” ﬁa./ + Vo’o’ 770/ =0. (1026)

We now assume that n(t) oscillates with a single frequency w, i.e. 1, (t) =
¥, e~ This results in a set of linear algebraic equations for the components
Py

(W Ty = Vo) U =0 . (10.27)

These are n equations in n unknowns: one for each value of 0 = 1,...,n.
Because the equations are homogeneous and linear, there is always a trivial
solution 7 = 0. In fact one might think this is the only solution, since

(WT—-V)yp=0 N PYp=(?T-V) ' 0=0. (10.28)

However, this fails when the matrix w? T — V is defective!, i.e. when
det(w?T - V) =0. (10.29)

Since T and V are of rank n, the above determinant yields an n™ order polyno-
mial in w?, whose n roots are the desired squared eigenfrequencies {w? ..., w?}.

Once the n eigenfrequencies are obtained, the modal matrix is constructed
as follows. Solve the equations

n

T =V )% =0 10.30
> (W Ty = Vo) ¥y (10.30)

o’'=1

which are a set of (n—1) linearly independent equations among the n components
of the eigenvector 4. That is, there are n equations (¢ = 1,...,n), but one
linear dependency since det (w? T — V) = 0. The eigenvectors may be chosen to
satisfy a generalized orthogonality relationship,

¢£’Z> To‘o’ @ch(r]’) = 500” . (1031)

IThe label defective has a distastefully negative connotation. In modern parlance, we should
instead refer to such a matrix as determinantally challenged.
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To see this, let us duplicate eqn. 10.30, replacing ¢ with j, and multiply both
equations as follows:

U9 X (BT = Vo) U0 = 0 (1032
P x (W, —V, )98 =0. (10.33)

Using the symmetry of T and V, upon subtracting these equations we obtain

(W — w?) Z pOT U =0, (10.34)

o,0'=1

where the sums on ¢ and j have been made explicit. This establishes that
eigenvectors ¥ and 1) corresponding to distinct eigenvalues w? # wjz are

orthogonal: () T () = 0. For degenerate eigenvalues, the eigenvectors are
not a priori orthogonal, but they may be orthogonalized via application of the
Gram-Schmidt procedure. The remaining degrees of freedom - one for each
eigenvector — are fixed by imposing the condition of normalization:

wff) - wff) / wﬁ(j) Tuu’ 7/};(;’) - wgi) Ty wi—]’) - 5%'3‘ : (10.35)

The modal matrix is just the matrix of eigenvectors: A, = 0o

With the eigenvectors w((,i) thusly normalized, we have

0= wc(:) (WJZ Tcro’ - voa’) ng’)
= w26, — OV Y (10.36)

J Ui

with no sum on j. This establishes the result

A"V A = diag (wf, ..., w2) . (10.37)

n

10.4 Example: Masses and Springs

Two blocks and three springs are configured as in Fig. 11.13. All motion is
horizontal. When the blocks are at rest, all springs are unstretched.

(a) Choose as generalized coordinates the displacement of each block from its equi-
librium position, and write the Lagrangian.

(b) Find the T and V matrices.
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;‘I{.‘l ;E{.‘z ,qu:‘}
SRR i Bi1e

Figure 10.1: A system of masses and springs.

(c) Suppose

Find the frequencies of small oscillations.
(d) Find the normal modes of oscillation.

(e) At time t = 0, mass #1 is displaced by a distance b relative to its equilibrium
position. ILe. 2;(0) = b. The other initial conditions are z,(0) = 0, #,(0) = 0,
and #,(0) = 0. Find t*, the next time at which z, vanishes.

Solution

(a) The Lagrangian is

_ 1 2 1 2 1 2 1 2 1 2

(b) The T and V matrices are

v - 0T _(m 0 v U (kitky —k
901,06,  \ 0 my ’ 9 0x;0x;  \ —ky kgt ks

(c) We have m; = 2m, my = m, k;, = 4k, ky = k, and k; = 2k. Let us write
w? = Awi, where wy = /k/m. Then

) (25 1
wT—V-k( Lol
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The determinant is
det (W?T — V) = (2A% — 11\ + 14) k*
=X -7 (N —2)k*.

There are two roots: A\_ =2 and A\, = %, corresponding to the eigenfrequencies
2k Tk
w_ =4/ — , Wy, =\l =—
m 2m

(d) The normal modes are determined from (w2T — V)4 = 0. Plugging in
A = 2 we have for the normal mode ¢

_ -) .
() ) e - ey

Plugging in A = % we have for the normal mode 15” )

(+) o
e R &)

The standard normalization ¢\ T, w](-b) =4, gives

C —

1
=m0 G- (10.38)

1
Vém
(e) The general solution is

(2) =A G) cos(w_t) + B (_12> cos(w, t) +C G) sin(w_t) + D (_12) sin(w, ) .

Thus,
z,(t) = 3b- (2 cos(w_t) + Cos(w+t)>
z,(t) = 3b- (Cos(w_t) - cos(w+t)) :

Setting z,(t*) = 0, we find

2T

w_ + w4

cos(w_t") =cos(wyt’) = mT—wilt=wit-1 = t
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Figure 10.2: The double pendulum.

10.5 Example: Double Pendulum

As a second example, consider the double pendulum, with m; = m, = m and
¢, = ¢, = L. The kinetic and potential energies are

T = ml*0% + me® cos(0, — 6,) 0,6, + %mﬁ%% (10.39)
V = —2mgl cos 0, — mglcos b, , (10.40)
leading to
T= (27%2 Z@ , V= <2”89€ m(ng) . (10.41)
Hhen 5 o [2w? — 2w? w?
wT =V =ml ( 2 0 wQ_w(Q)) : (10.42)

with wy, = /g/l. Setting the determinant to zero gives
2w —wd-wi=0 = W=02+£V2)w?. (10.43)

We find the unnormalized eigenvectors by setting (w? T—V) ) = 0. This gives

V=04 (_lﬂ) , Y =CC (+1/§> , (10.44)

where C are constants. One can check T, w((,i) wg) vanishes for ¢ # j. We
then normalize by demanding T, , 1/15) @Z)L(:,) = 1 (no sum on 7), which determines
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the coefficients C; = 14/(2 + v/2)/m¢2. Thus, the modal matrix is

vou\ (VIR ViR

A= = - : (10.45)
vy by VmE\ _ 1T ovE 41— 22

10.6 Zero Modes

Recall Noether’s theorem, which says that for every continuous one-parameter
family of coordinate transformations,

4% —4(¢,¢) .  4,(¢,¢(=0)=gq,, (10.46)

which leaves the Lagrangian invariant, i.e. dL/d¢ = 0, there is an associated
conserved quantity,

A= d g_q[; aa—qg satisfies % =0. (10.47)

For small oscillations, we write ¢, = ¢, + 7, hence

Ay, = chg N (10.48)

where k labels the one-parameter families (in the event there is more than one
continuous symmetry), and where

6@7’
= E T ,— ) 10.4
Ck‘o' ~ oo agk o (O 9)

Therefore, we can define the (unnormalized) normal mode

&= Ciolls (10.50)

which satisfies 5k = 0. Thus, in systems with continuous symmetries, to each
such continuous symmetry there is an associated zero mode of the small oscil-
lations problem, i.e. a mode with w? = 0.
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Figure 10.3: Coupled oscillations of three masses on a frictionless hoop of radius R.
All three springs have the same force constant k, but the masses are all distinct.

10.6.1 Example of Zero Mode Oscillations

The simplest example of a zero mode would be a pair of masses m; and m,
moving frictionlessly along a line and connected by a spring of force constant k.
We know from our study of central forces that the Lagrangian may be written

1 -2 1 -2 1 2
L — §m1x1 + §m2£132 - ik(l'l - :UQ)

= IMX? + pi® — Lka? (10.51)

where X = (myx,+myx,)/(m,+m,) is the center of mass position, r = x,;—x, is
the relative coordinate, M = m,+m, is the total mass, and p = m;ms,/(m,+m,)
is the reduced mass. The relative coordinate obeys # = —w?x, where the
oscillation frequency is w, = +/k/pu. The center of mass coordinate obeys X =0,
1.e. its oscillation frequency is zero. The center of mass motion is a zero mode.

Another example is furnished by the system depicted in fig. 10.3, where
three distinct masses m,, m,, and m4 move around a frictionless hoop of radius
R. The masses are connected to their neighbors by identical springs of force
constant k. We choose as generalized coordinates the angles ¢, (¢ = 1,2,3),
with the convention that

O < Py < P33 <2+ (10-52)

Let RX be the equilibrium length for each of the springs. Then the potential
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energy is
U = 3kRH (6= 6y =) + (65— 6 = X) + (27 + 6, — 6= 1)° |
= %k’R2{(¢2 - ¢1)2 + (¢35 — ¢2)2 + 27+ ¢ — ¢3)2 +3x% — 47TX} ) (10.53)

Note that the equilibrium angle X enters only in an additive constant to the
potential energy. Thus, for the calculation of the equations of motion, it is
irrelevant. It doesn’t matter whether or not the equilibrium configuration is
unstretched (X = 27/3) or not (X # 27/3).

The kinetic energy is simple:

T = LR (my & 4+ my &+ my 63) (10.54)
The T and V matrices are then
my R? 0 0 2kR?> —kR? —kR?
T= 0 myR* 0 , V=|-kR* 2kR* —kR?*| . (10.55)
0 0 myR? —kR? —kR? 2kR?
We then have
g—% -2 2 1 1
wWw*T -V = kR? I &-2 1 . (10.56)
1 1 ?’2—?2) —2

We compute the determinant to find the characteristic polynomial:

P(w) = det(w® T — V) (10.57)
:“’—6—2( Loy Lo ] )w4+3(i+i+i)w2
022 023 03 R05 2308 64 o QF5)
where 22 = k/m,. The equation P(w) = 0 yields a cubic equation in w?,

but clearly w? is a factor, and when we divide this out we obtain a quadratic
equation. One root obviously is w? = 0. The other two roots are solutions to
the quadratic equation:

o= D+ B+ BN @ - ) 52 ) L2 - 29)° . (1058)

To find the eigenvectors and the modal matrix, we set

w?
—J _ 1
& =2 2 1 1 4
1 &-2 1 W9 =0, (10.59)
2 (,_;2. ¢(])
1 1 Q_J;,Q» -2 3
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Writing down the three coupled equations for the components of ¥"), we find

wz. . u}z . w2~ ;

J () J (4) J (4)
3 ==L _3 ==L _3 . 10.60
() v = (G o) = (3 —9) v (10:60)

We therefore conclude

w2 -1
(% -3)
w0 —c | (4 _3)" (10.61)
J 22 ' :
w? -1
(% -3)

The normalization condition wc(f) T, ¢§],') = 0,; then fixes the constants C;:
w2 -2 w2 -2 w2 —2 )
m, (HJ% — 3) + m, (ﬁé — 3) + My (ﬁjg — 3> IC;"=1. (10.62)

The Lagrangian is invariant under the one-parameter family of transforma-
tions

by — 0, + ¢ (10.63)

for all 0 = 1,2,3. The associated conserved quantity is
< OL 99,
— 96, OC
= R* (m, 1 + My Gy + My 453) ; (10.64)

which is, of course, the total angular momentum relative to the center of the
ring. Thus, from A = 0 we identify the zero mode as &;, where

& =C (m1¢ 1+ My oy + myd 3) ) (10.65)

where C is a constant. Recall the relation n, = A_, {; between the generalized
displacements 7, and the normal coordinates §;. We can invert this relation to
obtain

£i = AZ{fl 770' = Atia TUU' 770'/ : (1066)

Here we have used the result A'T A = 1 to write
AT'=A'T. (10.67)

This is a convenient result, because it means that if we ever need to express
the normal coordinates in terms of the generalized displacements, we don’t have
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to invert any matrices — we just need to do one matrix multiplication. In our
case here, the T matrix is diagonal, so the multiplication is trivial. From eqns.
10.65 and 10.66, we conclude that the matrix A* T must have a first row which
is proportional to (m,,my, my). Since these are the very diagonal entries of T,
we conclude that A" itself must have a first row which is proportional to (1,1, 1),
which means that the first column of A is proportional to (1,1,1). But this is

confirmed by eqn. 10.60 when we take j = 1, since wj_; = 0: P = ) = V),

10.7 Chain of Mass Points

Next consider an infinite chain of identical masses, connected by identical springs
of spring constant k£ and equilibrium length a. The Lagrangian is

L= %mei - %/{;Z(xnﬂ —z, —a)?
=imy k= Lk (g —u,)”, (10.68)

where u,, = x,, — na — b is the displacement from equilibrium of the n'" mass.
The constant b is arbitrary. The Euler-Lagrange equations are

d(oL\ 0L
dt\oa, )~ " T ou.

= k(un+1 - un) - k(un - un—l)

= k(g +u,_y —2u,) . (10.69)

Now let us assume that the system is placed on a large ring of circumference
Na, where N > 1. Then u,_ 5 = u,, and we may shift to Fourier coefficients,

1 _
u, = —= Y 4", (10.70)
VN £

~ 1 —1iqan
uq = T E e q Uy (1071)
N
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where ¢; = 27j/Na, and both sums are over the set j,n € {1,..., N}. Expressed
in terms of the {,}, the equations of motion become

~

1 )
uq = _\/N Z €_zqna Un

= E N Z T (un—l-l + Up_q 2un)
k1 .
— __N Z e—zqan (6 qa + e—an 2) un
m
2k 2 (1 ~
=~ sin (3qa) G, (10.72)

Thus, the {,} are the normal modes of the system (up to a normalization
constant), and the eigenfrequencies are

2k | .
Wy = | sin (3qa)| . (10.73)

q

This means that the modal matrix is

A, = ——=—=e 10.74
" \/Nm ( )
1

where we’ve included the T factor for a proper normalization. (The normal

modes themselves are then ¢, = Al T, u, = \/mi, For complex A, the
normalizations are ATTA = 1 and A?VA = diag(w?, ..., w%).

Note that

,=md, (10.75)

= 2k§,,, — ko kS (10.76)

nn

nn' n,n’/+1 n,n/—1

and that

N N
(ATTA), =D D AL T, AL

n=1n'=1
1 N N
LSS g, e
Nm n=1n'=1
1 N
= ¥ Zez(q’_q)an — 5qq’ , (10.77)
n=1
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and

(ATVA),_, Z Z AR T AL,

n=1n/=1
1 N N
- Nm Z Z e <2k 5n,n’ —k 6n,n’+l - kén,n’—l) e
n=1n/=1
N

k1 o -, iy
= — i(¢' —q)an 9 _eTWa _ ciqa

m N c (2-e e'r?)

4k . 5/ )
= — sin’(3q0) 0,0 = Wy 3,y (10.78)

Since 7, o = &,, where G = =%, we may choose any set of ¢ values such that
no two are separated by an mteger multiple of G. The set of points {jG} with
7 € Z is called the reciprocal lattice. For a linear chain, the reciprocal lattice is

s

itself a linear chain?. One natural set to choose is q € [— - ﬂ This is known
as the first Brillouin zone of the reciprocal lattice.

Finally, we can write the Lagrangian itself in terms of the {u,}. One easily
finds o
L= %mZﬁqﬂq— kZ(l—cosqa) iy 1, (10.79)
q q
where the sum is over ¢ in the first Brillouin zone. Note that
U =10 g q="1,. (10.80)
This means that we can restrict the sum to half the Brillouin zone:
. 4k
= —mz { U, — — sm%%qa) iy, ﬂq} . (10.81)
q€[0,7]

Now @, and 4; may be regarded as linearly independent, as one regards complex
variables z and z*. The Euler-Lagrange equation for i gives

d (oL oL . .
E<_) _ = i, = —w?d, . (10.82)

~* 9 q q
8uq 8u;

Extremizing with respect to 4, gives the complex conjugate equation.

2For higher dimensional Bravais lattices, the reciprocal lattice is often different than the real

space (“direct”) lattice. For example, the reciprocal lattice of a face-centered cubic structure is a
body-centered cubic lattice.
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10.7.1 Continuum Limit

Let us take N — 0o, a — 0, with L, = Na fixed. We'll write
u,(t) — u(x = na,t) (10.83)

in which case

ImY il — lm/dﬁ Ou)* (10.84)
2 2] \ ot ‘

2
V=Y — ) — %k/d—‘” (“(x +a) - “(x)) @  (10.85)

a a

T

Recognizing the spatial derivative above, we finally obtain

L= /dx L(u, Opu, Opu)

ou\ > ou\ >
L-ty <§> 1 (g) 7 (10.86)

where 1 = m/a is the linear mass density and 7 = ka is the tension®. The
quantity £ is the Lagrangian density; it depends on the field u(x,t) as well as
its partial derivatives d,u and 9,u*. The action is

ty Ty
Slu(z,t)] = /dt/dx L(u, Opu, Oyu) (10.87)
ta Ta

where {z,,z,} are the limits on the x coordinate. Setting 65 = 0 gives the
Euler-Lagrange equations

oc 0 oL 0 oL
== - === _)=0. 10.
ou Ot <8(8tu)) oz (8(8xu)> 0 (1088)
For our system, this yields the Helmholtz equation,
10 O«
202 92 (10.89)

where ¢ = \/7/u is the velocity of wave propagation. This is a linear equation,
solutions of which are of the form

u(z,t) = C v e ™t (10.90)

3For a proper limit, we demand p and 7 be neither infinite nor infinitesimal.
4L may also depend explicitly on z and t.
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where
w=cq . (10.91)

Note that in the continuum limit a — 0, the dispersion relation derived for the

chain becomes
, 4k ka? 9

. 9 2 2
Wy = sin (%qa) — =0, (10.92)

q

and so the results agree.

10.8 Appendix I : General Formulation

In the development in section 10.1, we assumed that the kinetic energy 7' is a
homogeneous function of degree 2, and the potential energy U a homogeneous
function of degree 0, in the generalized velocities ¢,. However, we've encoun-
tered situations where this is not so: problems with time-dependent holonomic
constraints, such as the mass point on a rotating hoop, and problems involving
charged particles moving in magnetic fields. The general Lagrangian is of the
form

L= %TQJUI(q) QU qU’ + T1z7<q) QJ + TO(q) - Ulo'(Q) QU - UO(Q) ) (1093)

where the subscript 0, 1, or 2 labels the degree of homogeneity of each term in
the generalized velocities. The generalized momenta are then

oL .
pO’ - . = TQO'O'/ qa,/ +T10. - Ula (10.94)
a4,
and the generalized forces are
aL a(TO - Uo) a(Tl T Ul /) . 1 8T2 Y .
F - - g z / — 299 7 "oy 1095
s o T o0 U T 5 "o, oo (10.95)

and the equations of motion are again p, = F,. Once we solve

In equilibrium, we seek a time-independent solution of the form ¢ (t) =
This entails

o

0
0. (UO(Q) - To(q)) =0, (10.96)
Qo | N
q9=q
which give us n equations in the n unknowns (g, ...,q,). We then write ¢, =

d, + 1, and expand in the notionally small quantities n,. It is important to
understand that we assume n and all of its time derivatives as well are small.
Thus, we can expand L to quadratic order in (n,7) to obtain

L= %TUU, 7;/0 7;]0’ - % Bacr’ Mo 770’ - %Va'o" No Mo 5 (1097)
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where

2 P
Taa’ = T20'O'/<q_) R V = M

oo’

_ a([]1(7 B
’ Baa’ =2 aq

dq, 0q,,

(e

q9=q

(10.98)

Note that the T and V matrices are symmetric. The B__, term is new.

Now we can always write B = %(Bs + B*) as a sum over symmetric and
antisymmetric parts, with B® = B + B' and B* = B — B". Since,

s . d s
BJJ’ No Nt = % (% Baa’ Mo 770’) ) (1099)

any symmetric part to B contributes a total time derivative to L, and thus
has no effect on the equations of motion. Therefore, we can project B onto its
antisymmetric part, writing

_ 8<U10'/ _Tla/> a(lea_jjla)
B,, = ( 5 Sy . (10.100)
q

We now have
B oL

Py = % = TJU’ 7;]0’ + %BUO'/ 770’ ) (10101)
and 5L
Fo - % = _% Baa" 770" - Va’a/ Ny - (10102)

The equations of motion, p, = F, then yield

Ta.o./ 7.70/ + Ba.a/ ha/ + Vo’o" no_/ = O . (10103)

Let us write n(t) = ne ™'. We then have
(WT+iwB-V)n=0. (10.104)
To solve eqn. 10.104, we set P(w) = 0, where P(w) = det[Q(w)], with
Qw)=w*T+iwB -V . (10.105)

Since T, B, and V are real-valued matrices, and since det(M) = det(M?") for any
matrix M, we can use B! = —B to obtain P(—w) = P(w) and P(w*) = [P(w)]".
This establishes that if P(w) = 0, i.e. if w is an eigenfrequency, then P(—w) =0
and P(w*) = 0, i.e. —w and w* are also eigenfrequencies (and hence —w* as

well).
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10.9 Appendix II : Additional Examples

10.9.1 Right Triatomic Molecule

A molecule consists of three identical atoms located at the vertices of a 45° right
triangle. Each pair of atoms interacts by an effective spring potential, with all
spring constants equal to k. Consider only planar motion of this molecule.

(a) Find three ‘zero modes’ for this system (i.e. normal modes whose asso-
ciated eigenfrequencies vanish).

(b) Find the remaining three normal modes.

Solution

It is useful to choose the following coordinates:

(X1, Y1) = (21, 1) (10.106)
(Xy,Y3) = (a+ 2y, ) (10.107)
(X3, Ys) = (23, a+ys). (10.108)

The three separations are then

diy = \/(a + 2y — 1)+ (Yo — y1)°
=a+Ty— T+ ... (10.109)

dyg = \/(—a + 13— 7y) + (a+y; — yp)?
=V2a— (23— 2) + J5(ys —v2) +- - (10.110)

dy3 = \/(13 —z)*+ (a+y; —y1)?
=a4+Y;— Y +... . (10.111)
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The potential is then

U =3k (dy — a)” + Lk (dyy — V2a)* + Lk (dyy — a)?

— %k:(xg — 581)2 + ik‘(w?) - x2)2 + ik(y:,) — y2)2

Defining the row vector

ntE(fE1ay1afE27?/2>$3»y3)a

we have that U is a quadratic form:

U= %navao”na” = %’r]tvn’

with

1 0O -1 0 0 0

0 1 0 0 0 -1

52U -1 0 § -3 -3 3

V: UO'/:a a :]{;

4o O4o’ | oq. _ 1 1 1 1

a 0 0 -3 3 3 -3

T R

0 -1} -} -} 3

The kinetic energy is simply
T = gm (a1 +§i + a5+ gs + 5 + 43) |

which entails
T

mé, ., .

oo’ T

(10.112)

(10.113)

(10.114)

(10.115)

(10.116)

(10.117)

(10.118)

(b) The three zero modes correspond to a-translation, y-translation, and

rotation. Their eigenvectors, respectively, are

1 0
0 1
1 1 1 0 1
¢1—\/3—m 0 ) ¢2—\/3—m 1 ) 1’/)3_2\/3_77’1
1 0
0 1
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/

Figure 10.4: Normal modes of the 45° right triangle. The yellow circle is the location
of the CM of the triangle.

To find the unnormalized rotation vector, we find the CM of the triangle, located
at (% ) %), and sketch orthogonal displacements 2 x (R, — Ry) at the position
of mass point i.

(c) The remaining modes may be determined by symmetry, and are given

by

—1 1 —1
—1 —1 -1
1 0 1 -1 1 2
_ _ - 10.120
¢4 2\/% 1 ) ¢5 2\/E 0 ) '¢6 2\/3—m -1 ) ( )
1 0 -1
0 1 2

with

[k 2k 3k
Wy = E s Wy = E s (,()3 = E . (10121)

Since T = m - 1 is a multiple of the unit matrix, the orthogonormality
relation ¢f T;; ¥} = 6°° entails that the eigenvectors are mutually orthogonal in
the usual dot product sense, with 4, - ¥, = m~'4§,,. One can check that the
eigenvectors listed here satisfy this condition.
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The simplest of the set {1, 5,94} to find is the uniform dilation )y,
sometimes called the ‘breathing” mode. This must keep the triangle in the same
shape, which means that the deviations at each mass point are proportional to
the distance to the CM. Next, it is simplest to find 4,, in which the long and
short sides of the triangle oscillate out of phase. Finally, the mode 1, must be
orthogonal to all the remaining modes. No heavy lifting (e.g. Mathematica) is
required!

10.9.2 Triple Pendulum

Consider a triple pendulum consisting of three identical masses m and three
identical rigid massless rods of length ¢, as depicted in Fig. 10.5.

a) Find the T and V matrices.
(b) Find the equation for the eigenfrequencies.

(¢) Numerically solve the eigenvalue equation for ratios w?/w3, where wy =
g/!. Find the three normal modes.

Solution

The Cartesian coordinates for the three masses are

xy =L sinf, y, = —{ cos b,
Ty =L sinf, + ¢ sind, Yy = —{ cos B, — { cos b,
Ty =L sinf; 4+ £ sinf, + £ sin 0 Yys = —{ cost; —{ costy — { cosls .

By inspection, we can write down the kinetic energy:
T = Im(&F + 0 + 23 + 05 + 5 + 93)
=1im ¢ {3«9% + 262462 +4 cos(0, — 6,) 6, 6,
+ 2 cos(, — 05) 0, 05 + 2 cos(6, — 65) 6, 93}
The potential energy is

U= —mgf{?) cosf; + 2 cos 0, +00893} :
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m

Figure 10.5: The triple pendulum.
and the Lagrangian is L =T — U:
L=1m¢? {39% + 262 + 6244 cos(6, — 0,) 0,0, + 2 cos(0, — 6,) 0, 0,

+2 cos(f, — 63) 0, 93} +mg€{3 cosf; + 2 cos b, + C0893} :

The Cartesian coordinates for the three masses are

xy =L sinb, y, = —{ cos b,
xy =L sinf; + ¢ sin 0, Yy = —L cos ), — { cos b,
g =L sinf; + ¢ sinf, + ¢ sin b, ys = —L costy — { cosOy, — £ cosf, .

By inspection, we can write down the kinetic energy:
T = gm(af + i + 5 + g5 + &5 + 55)

—Im¢? {39’% 202 1 62 1 4 cos(B, — 6,) 6, 6,
+2 cos(B, — 05) 0, 05 + 2 cos(6, — 65) b, 93}
The potential energy is

U= —mg€{3 cos ), + 2 cos b, —1—60303} :
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and the Lagrangian is L =T — U:
L= %mﬁQ {39% + 262+ 6244 cos(0, — 0,) 0,0, + 2 cos(0, — 65) 0, 0,

+2 cos(By — 65) b, 03} + mgl {3 cosf, + 2 cos b, + 00893} :

Write down expressions for the conjugate momenta. The momenta are given

T, = — =ml*{30, +26, cos(f; — 0,) + 05 cos(f, — 0

1= g = m {30 20, cos(6) = 0) + by cos(0) ~ )}

Ty = 8_92 = m€2{2 0, + 206, cos(0, — 0,) + 0 cos(b, — 93)}

T3 = % B mg2{9'3 + 91 cos(0, — 0;) + 92 cos(f, — 03)} '
2

The only conserved quantity is the total energy, £ =T + U.

(a) As for the T and V matrices, we have

3 2 1

2T
T, = 4 =m® [2 2 1
00,00, | g_, 111

and

3 00

0*U
Voor = =mgl |0 2 0
00,00, | g_, 00 1

(b) The eigenfrequencies are roots of the equation det (w? T—V) = 0. Defin-

ing w, = 1/g/¢, we have

3(w? — wd) 2w? w?
Ww*T —V = mf? 2w? 2(w? — wd) w?
w? w? (w? — w?)

and hence
det (W*T — V) = 3(w* — wp) - [2(w2 —w)? - wﬂ —2w?- [2 w(w? — wd) — w4]
+w?- [2@4 — 2w (W — wg)}
=6(w? —wd)® — 9w (W — i) + 4w°

=w® - 9w w' + 18wyw? — 6wy .
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(¢) The equation for the eigenfrequencies is
N —9N+18XA-6=0, (10.122)

where w? = Aw?. This is a cubic equation in A\. Numerically solving for the
roots, one finds

wi =0415774w; , ws =2.29428w; , wj =6.28995w; . (10.123)

I find the (unnormalized) eigenvectors to be

1 1 1
P, = 12921 | b, = | 0.35286 , = | —1.6450 | . (10.124)
1.6312 —2.3981 0.76690

10.9.3 Equilateral Linear Triatomic Molecule

Consider the vibrations of an equilateral triangle of mass points, depicted in
figure 10.6 . The system is confined to the (z,y) plane, and in equilibrium all
the strings are unstretched and of length a.

r

k

Figure 10.6: An equilateral triangle of identical mass points and springs.

(a) Choose as generalized coordinates the Cartesian displacements (x,, y,) with
respect to equilibrium. Write down the exact potential energy.

(b) Find the T and V matrices.

(c) There are three normal modes of oscillation for which the corresponding
eigenfrequencies all vanish: w, = 0. Write down these modes explicitly, and
provide a physical interpretation for why w, = 0. Since this triplet is degenerate,
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there is no unique answer — any linear combination will also serve as a valid ‘zero
mode’. However, if you think physically, a natural set should emerge.

(d) The three remaining modes all have finite oscillation frequencies. They cor-
respond to distortions of the triangular shape. One such mode is the “breathing
mode” in which the triangle uniformly expands and contracts. Write down
the eigenvector associated with this normal mode and compute its associated
oscillation frequency.

(e) The fifth and sixth modes are degenerate. They must be orthogonal (with
respect to the inner product defined by T) to all the other modes. See if you
can figure out what these modes are, and compute their oscillation frequencies.
As in (a), any linear combination of these modes will also be an eigenmode.

(£) Write down your full expression for the modal matrix A,;, and check that
it is correct by using Mathematica.

Solution

Choosing as generalized coordinates the Cartesian displacements relative to
equilibrium, we have the following:

#1 : (Ilvyl)
#2 (a+x2,y2)
#3: (%a+a:3,\/7§a+y3) .

Let d,j be the separation of particles ¢ and j. The potential energy of the spring

connecting them is then 3 k (d;; — a)>.

d%z = (a + Iy — xl)g + (yz - 91)2
dyy = (— 30+ 7y _%)24' (%ga+y3 —92)2
dis = (3a+ 23 — 351)2 + (Ba+y; — y1)2 :
The full potential energy is
U=1k(dy—a)’ + 3k (dy —a)* + Lk (dyy —a)” . (10.125)
This is a cumbersome expression, involving square roots.

To find T and V, we need to write T" and V' as quadratic forms, neglecting
higher order terms. Therefore, we must expand d;; — a to linear order in the
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\ rotation

x—translation y—translation

Figure 10.7: Zero modes of the mass-spring triangle.

generalized coordinates. This results in the following:

d12:a+(:v2—x1)+...

dog = a— % (25— 1) + 5 (s —v5) + - -
dig=a+3(s—2) +5 (g =)+ -
Thus,
UZ%k(xz—xlf—i—%k(xQ—x3—\/§y2+\/§y3)2
+§k(x3—x1+\/§y3—\/§y1)2+higher order terms .
Defining

(Q17 42,93, 94, 955 %) = (951» Y1, 29, Y, T3, yg) )
we may now read off

5/4 V3/4 -1 0 —1/4 —+/3/4

V3/4 3/4 0 0 —V3/4  —3/4

U _| 0 5/4 —v3/4  —1/4 /34
77" 0qy Oqy . o 0 0 —V3/4  3/4 V3/4  —3/4

—1/4 —+/3/4 —1/4 V3/4 1/2 0
—V3/4 —3/4 V3/4 —3/4 0 3/2

The T matrix is trivial. From

T =Ym(i? + 97 + a3 + 93 + 2+ 93) .
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-~ dilation A

ANIVAN

; A mode B mode

Figure 10.8: Finite oscillation frequency modes of the mass-spring triangle.

we obtain
0*T 5
L= = mao.. s
Y 0q; 0g; N
and T =m -1 is a multiple of the unit matrix.

The zero modes are depicted graphically in figure 10.7. Explicitly, we have

1/2

£ — 1 1/2
) rot_\/?)_m \/5/2

-1
0

—_
= O = O = O

|
ﬁ
S
S = O = O =

That these are indeed zero modes may be verified by direct multiplication:

Vg, =VE,, =0.

The three modes with finite oscillation frequency are depicted graphically
in figure 10.8. Explicitly, we have

—1/2 —/3/2 —V/3/2
—/3/2 1/2 —1/2
€ = 1 ~1/2 £ — 1 V3/2 £ = 1 V3/2
AT Bm | e | T B | w2 | T B | e
1 0 0
0 -1 1
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The oscillation frequencies of these modes are easily checked by multiplying
the eigenvectors by the matrix V. Since T = m - 1 is diagonal, we have V&, =

mw? €,. One finds
3k 3k
Wy = Wp = % o Wan = E :

Mathematica? I don’t need no stinking Mathematica.

Figure 10.9: John Henry, statue by Charles O. Cooper (1972). “Now the man that
invented the steam drill, he thought he was mighty fine. But John Henry drove fifteen
feet, and the steam drill only made nine.” - from The Ballad of John Henry.
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Chapter 11

Collisions

11.1 Elastic Collisions

A collision or ‘scattering event’ is said to be elastic if it results in no change in
the internal state of any of the particles involved. Thus, no internal energy is
liberated or captured in an elastic process.

Consider the elastic scattering of two particles. Recall the relation between
laboratory coordinates {r,,r,} and the CM and relative coordinates { R, r}:

R:w r1:R+Lr (11.1)
my + Mo my + ma
my
r=r,—17 r,=-—R——r 11.2
1 2 2 M1 + 1y ( )

If external forces are negligible, the CM momentum P = MR is constant, and
therefore the frame of reference whose origin is tied to the CM position is an
inertial frame of reference. In this frame,

My U ’ mq v
oM = —2 oM = —— (11.3)
my + My my + My

where v = v; — v, = v{™ — v$M is the relative velocity, which is the same in
both L and CM frames. Note that the CM momenta satisfy

P = myo™ = v (11.4)

pM = myvs™ = —pv | (11.5)
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§ CM OM

P P

cM ! ; CM

P> | Py

Figure 11.1: The scattering of two hard spheres of radii a and b The scattering angle
is x.

where = mymy/(m; +m,) is the reduced mass. Thus, p{™ + p§™ = 0 and the
total momentum in the CM frame is zero. We may then write

CM — CM —

2 2 2
P = pon 5 Py = —poh = v =20 B B (11.6)

2my 2me 21

The energy is evaluated when the particles are asymptotically far from each
other, in which case the potential energy is assumed to be negligible. After the
collision, energy and momentum conservation require

2

P, = pi , ph " = —pon’ = E'™M = ™M = 5—; . (11.7)
The angle between n and n' is the scattering angle x:

n-n' =cosy . (11.8)

The value of y depends on the details of the scattering process, i.e. on the
interaction potential U(r). As an example, consider the scattering of two hard
spheres, depicted in Fig. 11.1.

The potential is

U(r) =

1 <
{oo ifr<a+b (11.9)

0 ifr>a+b.

Clearly the scattering angle is x = ™ — 2¢,, where ¢, is the angle between the
initial momentum of either sphere and a line containing their two centers at the
moment of contact.
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S

Figure 11.2: Scattering of two particles of masses m; and my. The scattering angle
X is the angle between n and n’.

There is a simple geometric interpretation of these results, depicted in Fig.
11.2. We have

p; =mV + poh p) =mV + pyn’ (11.10)
Py = myV — pon py =myV — poft’ . (11.11)

So draw a circle of radius p, whose center is the origin. The vectors p,n and
pon’ must both lie along this circle. We define the angle ¢ between V' and n:

V-n=cos . (11.12)

It is now an exercise in geometry, using the law of cosines, to determine every-
thing of interest in terms of the quantities V', v, 1, and x. For example, the
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(a) my < my (b) my > m,

Figure 11.3: Scattering when particle 2 is initially at rest.

momenta are

P = \/m% V2 + p20? + 2my Vv cos

Py = \/mf V2 + 1202 + 2myuVo cos(x — ¢)

Py = \/mg V2 + 1202 — 2mouV v cos 1

Py = \fm3V2 4 20 — 2oV o cos(x — )

and the scattering angles are

0, — tan-! ( v sin @ ) +tan ( po sin(y — ) )

pv cosp +myV pv cos(x — ) +m,V

6 — tan-! fuv sin ¢ + tap-! pwsin(x — 1)
? v cosp — myV pv cos(y — 1) —myV

(11.13)

(11.14)

(11.15)

(11.16)

(11.17)

(11.18)

If particle 2, say, is initially at rest, the situation is somewhat simpler. In
this case, V.= m,;V /(m; + my) and m,V = pv, which means the point B lies
on the circle in Fig. 11.3 (m, # m,) and Fig. 11.4 (m; = m,). Let 9, , be the
angles between the directions of motion after the collision and the direction V'
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of impact. The scattering angle x is the angle through which particle 1 turns
in the CM frame. Clearly

sin y

tan v, = Uy = 3(m—x) . (11.19)

o+ cos x
We can also find the speeds v} and v} in terms of v and x, from

2 m 2 m
Py =po+ (m—; po)” — 221 p§ cos(m — X) (11.20)

2

and

Py =2p5 (1 —cosy) . (11.21)

These equations yield

2miv .y
s Ué = m Sln(i)() . (1122)

2 2
B \/m1 + m5 +2m1mQCOSXU
my + ma

/
Uy

The angle 9,,,,, from Fig. 11.3(b) is given by sin®,,,, = =2. Note that when

my; = my we have ¥, + Y9 = m. A sketch of the orbits in the cases of both
repulsive and attractive scattering, in both the laboratory and CM frames, in
shown in Fig. 11.5.

11.1.1 Central Force Scattering

Consider a single particle of mass p movng in a central potential U(r), or a two
body central force problem in which p is the reduced mass. Recall that

dr  d¢ dr ¢ dr
R S 11.2
dt —dt d¢ pr?2 do’ (11.23)

Figure 11.4: Scattering of identical mass particles when particle 2 is initially at rest.
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f} Ifj ry
7 Attractive scattering in lab

Repulsive scattering in lab

Attractive scattering in CM

Repulsive scattering in UM

Figure 11.5: Repulsive (A,C) and attractive (B,D) scattering in the lab (A,B) and
CM (C,D) frames, assuming particle 2 starts from rest in the lab frame.

and therefore
1,2 &
E = sur + e + U(r)
e (dr\ P
= — U(r) . 11.24
2purd (d¢> - 2ur? +Ulr) ( )
Solving for j—;, we obtain
dr 2t
i :I:\/ 7 (E-U(r) —r?, (11.25)
Consulting Fig. 11.6, we have that
l ]O dr
_ 11.26
%o NG (11.26)
where 7 is the radial distance at periapsis, and where
62
+U(r) (11.27)

Ueﬂ(r) - ZMTZ
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b+ db

Figure 11.6: Scattering in the CM frame. O is the force center and P is the point of
periapsis. The impact parameter is b, and x is the scattering angle. ¢, is the angle
through which the relative coordinate moves between periapsis and infinity.

is the effective potential, as before. From Fig. 11.6, we conclude that the

scattering angle is
X = |7 —2¢,| . (11.28)

It is convenient to define the impact parameter b as the distance of the
asymptotic trajectory from a parallel line containing the force center. The
geometry is shown again in Fig. 11.6. Note that the energy and angular mo-
mentum, which are conserved, can be evaluated at infinity using the impact

parameter:
E =12 , 0= v b . (11.29)

Substituting for £(b), we have

do(E,b) = / dr b (11.30)

e _ U
o r2 E

In physical applications, we are often interested in the deflection of a beam
of incident particles by a scattering center. We define the differential scattering
cross section do by

# of particles scattered into solid angle d€2 per unit time
do = — ) (11.31)
incident flux
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|

Figure 11.7: Geometry of hard sphere scattering.

Now for particles of a given energy F there is a unique relationship between the
scattering angle x and the impact parameter b, as we have just derived in eqn.
11.30. The differential solid angle is given by df2 = 27 sin x d, hence

do b d (302

do _ b jdb| _
dQ  siny |dx| |dcosy

. (11.32)

Note that g—g has dimensions of area. The integral of j—g over all solid angle is
the total scattering cross section,

r do

Op = 27r/dx siny 10 (11.33)

0

Let’s now work through some examples.

Example #1 : Hard Sphere Scattering — Consider a point particle scat-
tering off a hard sphere of radius a, or two hard spheres of radii a; and a,
scattering off each other, with a = a; + a,. From the geometry of Fig. 11.7, we

have b = asin ¢, and ¢, = (7 — x), so

b* = a’sin® (37 — x) = 3a° (1 + cos x) . (11.34)

We therefore have

a? (11.35)

and o = ma?. The total scattering cross section is simply the area of a sphere
of radius a projected onto a plane perpendicular to the incident flux.

Example #2 : Rutherford Scattering — Consider scattering by the Kepler
potential U(r) = —é. We assume that the orbits are unbound, i.e. they are
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Keplerian hyperbolae with £ > 0, described by the equation

a(e* —1) 1

r@) +1+4+¢ccosg = cosd €

Recall that the eccentricity is given by

2E(2 bu \’
=1+ — 1 ()
fuk?

We then have

= sec’¢y — 1 = tan’¢, = ctn®(1y) .

2

Therefore

We finally obtain

N |+

) 1( k )2 dctn®(3x)

m:dcosx_é pv2, dcos y

B N 1+ cosxy
2\ w2 ) dcosy \ 1 — cos

2
:( k ) esct (2
2pv2,

do AN
0= (E) csc? (3x) -

—_

[\

X) 5

|

which is the same as

Since g—g X X~

4

(11.36)

(11.37)

(11.38)

(11.39)

(11.40)

(11.41)

as Y — 0, the total cross section o, diverges! This is a

consequence of the long-ranged nature of the Kepler/Coulomb potential. In
electron-atom scattering, the Coulomb potential of the nucleus is screened by
the electrons of the atom, and the 1/r behavior is cut off at large distances.

11.1.2 Transformation to Laboratory Coordinates

We previously derived the relation
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where ¥ = ¢, is the scattering angle for particle 1 in the laboratory frame, and
v = % is the ratio of the masses. We now derive the differential scattering cross
section in the laboratory frame. To do so, we note that particle conservation
requires

d d
(%)L- 27 sind d = (%) - 2msinydy (11.43)
which says
do\  (do d cos x (11.44)
), \dQU) oy dcosd '
From
9 1
cost) = ——
V1 + tan?y
_ v + cos x (11.45)
V1472 +2ycosx ’
we derive
dcosd 1+ ycosy (11.46)
dcosy (1+72+2700sx)3/2 .
and, accordingly,
do\ (14974 27c0s0)" (do (11.47)
), 14 ycosy d) o '
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PHYSICS 110A : CLASSICAL MECHANICS
MIDTERM EXAM #1

[1] A particle of mass m moves in the one-dimensional potential

Ulz) =Uy = e (11.48)

(a) Sketch U(x). Identify the location(s) of any local minima and/or maxima,
and be sure that your sketch shows the proper behavior as x — 4o0.

(b) Sketch a representative set of phase curves. Identify and classify any and
all fixed points. Find the energy of each and every separatrix.

(c) Sketch all the phase curves for motions with total energy £ = % U,. Do the
same for E = U,. (Recall that e = 2.71828... .)

(d) Derive and expression for the period T' of the motion when |z| < a.

Solution:

(a) Clearly U(z) diverges to +oo for x — —oo, and U(z) — 0 for z — +o0.
Setting U’(z) = 0, we obtain the equation

2
U'(zx) = —(Qx — %) e =0, (11.49)

with (finite x) solutions at x = 0 and x = 2a. Clearly z = 0 is a local minimum
and x = 2a a local maximum. Note U(0) =0 and U(2a) =4e 2U, =~ 0.541 U,,.

(b) Local minima of a potential U(z) give rise to centers in the (z,v) plane, while
local maxima give rise to saddles. In Fig. 11.9 we sketch the phase curves. There
is a center at (0,0) and a saddle at (2a,0). There is one separatrix, at energy
E=U(2a) = 4e Uy ~ 0.541 U,

(¢) Even without a calculator, it is easy to verify that 4e~2 > 2. One simple
way is to multiply both sides by 2 e? to obtain 10 > ¢?, which is true since
e? < (2.71828...)7 < 10. Thus, the energy £ = 2U, lies below the local
maximum value of U(2a), which means that there are two phase curves with
E = % Us.

It is also quite obvious that the second energy value given, I/ = U,, lies above
U(2a), which means that there is a single phase curve for this energy. One
finds bound motions only for + < 2 and 0 < E < U(2a). The phase curves
corresponding to total energy F = %UO and E = U, are shown in Fig. 11.9.

205



0871
06T
U®) 47

0z

02T

Figure 11.8: The potential U(z). Distances are here measured in units of a, and the
potential in units of Uj.
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Figure 11.9: Phase curves for the potential U(z). The red curves show phase curves
for E = 2 U, (interior, disconnected red curves, [v] < 1) and E = Uy (outlying red
curve). The separatrix is the dark blue curve which forms a saddle at (z,v) = (2,0),
and corresponds to an energy E = 4e72U.

(d) Expanding U(z) in a Taylor series about z = 0, we have
U 3 4
U(z) = 0{12—x—+£—+...}. (11.50)

a? a 2a2

The leading order term is sufficient for |x| < a. The potential energy is then
equivalent to that of a spring, with spring constant k = 2U,/a®. The period is

m ma?
T =9 — =9 - . 11.51
m/k M/QUO (11.51)
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[2] A forced, damped oscillator obeys the equation

i+ 280+ wix = f, cos(wyt) . (11.52)
You may assume the oscillator is underdamped.
(a) Write down the most general solution of this differential equation.

(b) Your solution should involve two constants. Derive two equations relating
these constants to the initial position z(0) and the initial velocity ©(0). You do
not have to solve these equations.

(c) Suppose wy = 5.0s71, 3 =4.0s7!, and f, = 8cms™2. Suppose further you
are told that z(0) = 0 and x(T") = 0, where T' = % s. Derive an expression for
the initial velocity 4(0).

Solution: (a) The general solution with forcing f(t) = f,, cos({2t) is

z(t) =z, (t) + A(2) fy cos (2t — 6(12)) , (11.53)
with
A(Q) = [(wg — )2 +4ﬁ2!22]_1/ © o 5(Q) = tan”! (%) (11.54)
and
z,(t) = C e cos(vt) + D e P sin(vt) , (11.55)

with v = /w2 — 32.

In our case, £2 = w,, in which case A = (28w,)~* and § = {m. Thus, the most
general solution is

x(t) = Ce Pt cos(vt) + D et sin(vt) + sin(wyt) |- (11.56)

fo
25&10

(b) We determine the constants C' and D by the boundary conditions on x(0)
and #(0):

z(0) =C : (0) = —pC +vD + ;—; : (11.57)
Thus,
C=z(0) , D= gx(O) + % z(0) — QJ;—OV : (11.58)
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(¢) From x(0) = 0 we obtain C' = 0. The constant D is then determined by the

condition at time t =71 = %71’.

Note that v = \/wi — 2 = 3.0s™". Thus, with 7' = 7, we have vT = 77, and

2(T)=De T + % sin(w,7T') . (11.59)

This determines D:
D= 5"02)0 T sin(w,T) . (11.60)

We now can write
i(0) = vD + L2 (11.61)
26
_ S (4 DY G, (11.62)
2ﬁ [O% 0

- <1 -3 62“/3) cm/s | (11.63)

Numerically, the value is #(0) ~ 0.145cm/s .
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PHYSICS 110A : CLASSICAL MECHANICS
MIDTERM EXAM #2

[1] Two blocks connected by a spring of spring constant k& are free to slide
frictionlessly along a horizontal surface, as shown in Fig. 11.10. The unstretched

length of the spring is a.
M 'HHT‘

Figure 11.10: Two masses connected by a spring sliding horizontally along a friction-
less surface.

(a) Identify a set of generalized coordinates and write the Lagrangian.
[15 points]

Solution : As generalized coordinates I choose X and u, where X is the position
of the right edge of the block of mass M, and X + u + a is the position of the
left edge of the block of mass m, where a is the unstretched length of the spring.
Thus, the extension of the spring is u. The Lagrangian is then

L=1MX?+1m(X +0)® — tku?

= J(M +m)X? + tmi? + mX1 — Sku? . (11.64)

(b) Find the equations of motion.
[156 points]

Solution : The canonical momenta are
oL

pX:a—X:(M—i—m)X—i—mu : puE%:m(X—i-?l). (11.65)
The corresponding equations of motion are then
. oL 5 .
pX:FX:a_X = (M +m)X +mii=0 (11.66)
. oL 5o
p,=F, = u = m(X + 1) = —ku . (11.67)
U

(c) Find all conserved quantities.
[10 points]

Solution : There are two conserved quantities. One is py itself, as is evident
from the fact that L is cyclic in X. This is the conserved ‘charge’ A associated
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with the continuous symmetry X — X + (. i.e. A = p,. The other conserved
quantity is the Hamiltonian H, since L is cyclic in t. Furthermore, because the

kinetic energy is homogeneous of degree two in the generalized velocities, we
have that H = E, with

E=T+U = YM+m)X? + Imi® + mXu + Lku® . (11.68)

It is possible to eliminate X, using the conservation of A:

. A —mu
X = ) 11.69
M+m ( )
This allows us to write
A2 Mma?
E= TR LI VIS (11.70)

2(M+m)  2(M+m) 2

(d) Find a complete solution to the equations of motion. As there are two
degrees of freedom, your solution should involve 4 constants of integration. You
need not match initial conditions, and you need not choose the quantities in
part (c) to be among the constants.

[10 points]

Solution : Using conservation of A, we may write X in terms of #, in which

case
M
= +mm i=—ku = u(t)=Acos(2t)+ Bsin(t) (11.71)
where
(M +m)k
=4—. 11.72
- (11.72)
For the X motion, we integrate eqn. 11.69 above, obtaining
X(t) =X, + A _m (A (2t)— A+ B in(Qt)) (11.73)
T T My m T Mm \7 > ' '

There are thus four constants: X,, A, A, and B. Note that conservation of

energy says
A2
E=_——— +1gA*+BY). 11.74
A ) A (11.74)

Alternate solution : We could choose X as the position of the left block and
x as the position of the right block. In this case,

L=IMX?*+1imi? - lk(zr — X —b)*. (11.75)

— 2
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Here, b includes the unstretched length a of the spring, but may also include the
size of the blocks if, say, X and x are measured relative to the blocks” midpoints.
The canonical momenta are

9L oL

=—=MX = — =mi. 11.76
The equations of motion are then
. oL .
L
p,=F, = Z— = mi = —k(z — X =) . (11.78)
x

The one-parameter family which leaves L invariant is X — X 4+ ( and * —
x + (, t.e. simultaneous and identical displacement of both of the generalized

coordinates. Then .
A=MX+mz (11.79)

which is simply the z-component of the total momentum. Again, the energy is

conserved: .
E=3MX?+3mi® + 1k (z — X —b)* . (11.80)

We can combine the equations of motion to yield

d2
Mm@(fn—X—b):—k(Mer)(x—X—b), (11.81)
which yields
x(t) — X(t) = b+ Acos(£2t) + Bsin(§2t) , (11.82)

From the conservation of A, we have
MX(t)+mz(t)=At+C (11.83)

were (' is another constant. Thus, we have the motion of the system in terms
of four constants: A, B, A, and C":

A
X(t) = _MLer(b + Acos(2t) + B sin((Zt)) + ]Wt ——::7(7;; (11.84)
A
2(t) = 75 (b + Acos(£2t) + Bsin(2t)) + Mtii : (11.85)
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[2] A uniformly dense ladder of mass m and length 2¢ leans against a block
of mass M, as shown in Fig. 11.11. Choose as generalized coordinates the
horizontal position X of the right end of the block, the angle 6 the ladder makes
with respect to the floor, and the coordinates (x,y) of the ladder’s center-of-
mass. These four generalized coordinates are not all independent, but instead
are related by a certain set of constraints.

Recall that the kinetic energy of the ladder can be written as a sum Ty + 7T} s
where Ty = 3m(@? + §?) is the kinetic energy of the center-of-mass motion,

and T, = %[ 62, where I is the moment of inertial. For a uniformly dense ladder

rot

of length 2¢, I = %mf?

Figure 11.11: A ladder of length 2/ leaning against a massive block. All surfaces are
frictionless..

(a) Write down the Lagrangian for this system in terms of the coordinates X,
0, x, y, and their time derivatives.
[10 points]

Solution : We have . =T — U, hence

L=IMX?+im(i® + 9% + 110 — mgy . (11.86)
(b) Write down all the equations of constraint.
[10 points]

Solution : There are two constraints, corresponding to contact between the
ladder and the block, and contact between the ladder and the horizontal surface:

G(X,0,z,y) =x —Lcosf — X =0 (11.87)
Gyo(X,0,2,y) =y —{sinf =0 . (11.88)

(c¢) Write down all the equations of motion.
[10 points]

212



Solution : Two Lagrange multipliers, A\; and \,, are introduced to effect the
constraints. We have for each generalized coordinate g,

k

d (OL\ 0L oG,
dt (aqg> 94, ;:1: N g, = 9o (11.89)

where there are &k = 2 constraints. We therefore have

MX = —)\ (11.90)
mi =+ (11.91)
my = —mg + Ay (11.92)

16 = (sinf A, — Lcosf N, . (11.93)

These four equations of motion are supplemented by the two constraint equa-
tions, yielding six equations in the six unknowns {X, 0, z,y, A{, A\, }.

(d) Find all conserved quantities.
[10 points]

Solution : The Lagrangian and all the constraints are invariant under the
transformation

X—=>X+¢ , z—=2+C , y—y , 0—0. (11.94)

The associated conserved ‘charge’ is

0L i,

= 7% = MX +mi . 11.95
4, OC ¢=0 ( )

Using the first constraint to eliminate x in terms of X and 6, we may write this

as
A=(M+m)X —mlsinfo . (11.96)

The second conserved quantity is the total energy E. This follows because the
Lagrangian and all the constraints are independent of ¢, and because the kinetic
energy is homogeneous of degree two in the generalized velocities. Thus,

E = %]\4){2 + %m(xQ + ) + %Iéz + mgy (11.97)
A? .
= (M +m) + %(I + ml* — S mf? sin” 9) 0> + mglsing (11.98)

where the second line is obtained by using the constraint equations to eliminate
x and y in terms of X and 6.
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(e) What is the condition that the ladder detaches from the block? You do not
have to solve for the angle of detachment! Express the detachment condition in
terms of any quantities you find convenient.

[10 points]

Solution : The condition for detachment from the block is simply A\; = 0, i.e.
the normal force vanishes.

Further analysis : It is instructive to work this out in detail (though this level
of analysis was not required for the exam). If we eliminate = and y in terms of

X and 6, we find

r =X +{lcost y = {sinf (11.99)
i=X —/sinff = {cosfd (11.100)
i=X —lsinff — L cosh B> j=Llcosff — lsinfh? . (11.101)

We can now write

A =mi=mX —mlsinff —mlcosfh = -MX | (11.102)
which gives ) ) _
(M 4+ m)X =ml(sinf6+ cosf6) , (11.103)
and hence v
m . . .
Qz:)\l:—m+mf(sm99+008092) . (11.104)

We also have

Qy - )\2 =mg + my
=mg +ml(cosff —sin66?) . (11.105)

We now need an equation relating 6 and 6. This comes from the last of the
equations of motion:

I6 = Usin O\, — € cos O,

= — 1\]/}/[:;1 ? ( sin®0 6 + sin 0 cos 6 02) — mgl cos § — ml? ( cos?0 0 — sin @ cos 0 02)

= —mgl cosf — m€2<1 — W Sin29) 0+ tm ml? sinf cos 0 6° . (11.106)

Collecting terms proportional to g, we obtain

(I+me*— T sin’) 6= MLermEQ sin 6 cos 0 02 — mgl cos . (11.107)
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Figure 11.12: Plot of §* versus 6, for the ladder-block problem (eqn. 11.111). Allowed
solutions, shown in blue, have o > 1, and thus 6* < #,. Unphysical solutions, with
a < 1, are shown in magenta. The line 8* = 6 is shown in red.

We are now ready to demand (), = A\; = 0, which entails

. cosf .
0 =— 0 11.108
sin 6 ( )

Substituting this into eqn. 11.107, we obtain
(I +mf?) 6 = mgl sinf . (11.109)

Finally, we substitute this into eqn. 11.98 to obtain an equation for the detach-
ment angle, 6*

B A? B < m me?

—_—— = — . in6* | - 2mgl sin6* . 11.11
0 1 m) 3 M tm Tome Sn > smgl sin ( 0)

If our initial conditions are that the system starts from rest! with an angle of

L‘Rest’ means that the initial velocities are X = 0 and 6 = 0, and hence A = 0 as well.
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inclination 6, then the detachment condition becomes

sinf, = 3sin9*—%< o )( m )sin39*

2 M+m I+mi?

=3sin6* — Lo sing", (11.111)

a= <1+%) (1+#> . (11.112)

Note that o > 1, and that when M/m = co?, we recover §* = sin™" (2sin6,).

where

For finite o, the ladder detaches at a larger value of 8*. A sketch of 6* versus 6,
is provided in Fig. 11.12. Note that, provided a > 1, detachment always occurs
for some unique value 6* for each 6,.

2T must satisfy I < mf?2.
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PHYSICS 110A : CLASSICAL MECHANICS
FINAL EXAM

[1] Two blocks and three springs are configured as in Fig. 11.13. All motion is
horizontal. When the blocks are at rest, all springs are unstretched.

}f{.‘l }E{.‘z k:‘}

Figure 11.13: A system of masses and springs.

(a) Choose as generalized coordinates the displacement of each block from its equi-
librium position, and write the Lagrangian.
[5 points]

(b) Find the T and V matrices.
[5 points]

(¢) Suppose
my, = 2m

Find the frequencies of small oscillations.
[5 points]

(d) Find the normal modes of oscillation.
[5 points]

(e) At time t = 0, mass #1 is displaced by a distance b relative to its equilibrium
position. le. z,(0) = b. The other initial conditions are z,(0) = 0, &,(0) = 0,

and 2,(0) = 0. Find t*, the next time at which x, vanishes.
[5 points]

Solution

(a) The Lagrangian is

_ 1 2 1 2 1 2 1 2 1 2
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(b) The T and V matrices are

v - 9T _(m 0 v.oo U (kitky =k
v 8:151 83,"] N 0 moy ’ o (9:1:Z 333]- N —k'Q kQ + k‘3

(c) We have m; = 2m, my, = m, k; = 4k, ky = k, and k; = 2k. Let us write
w? = Aw?, where wy = \/k/m. Then

o g (2251
wT V—k< 1 \_3) -

The determinant is

det (W?T — V) = (2A* — 11\ + 14) k*
=X -7 (A —2)k*.

There are two roots: A\_ =2 and A\ = %, corresponding to the eigenfrequencies
2k Tk
w_ =4/ — , w, =1\ —
m + 2m

(d) The normal modes are determined from (w?T — V) Y@ = 0. Plugging in
A = 2 we have for the normal mode ¥

_ -) .
() ) e - ey

Plugging in A = % we have for the normal mode 1

2 1 (+) . 1
) R I e &)

The standard normalization wi(a) T, wj(-b) =4, gives

C=—x , Cp=—" (11.113)

(e) The general solution is
1) = 4 L cos(w_t) + B L cos(w,t) +C L sin(w_t) + D L sin(w,t) .
25 1 = 1 =
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Thus,
(1) = b (2 cos(w_t) + cos(w+t)>
To(t) = 2b- (cos(w,t) — Cos(w+t)) :

Setting z,(t*) = 0, we find

27
w_ + w4

cos(w_t") =cos(wyt’) = mT—wilt=wit-1 = t

[2] Two point particles of masses m, and m, interact via the central potential

7"2
U(T) = UO In <m> ,

where b is a constant with dimensions of length.

(a) For what values of the relative angular momentum ¢ does a circular orbit exist?
Find the radius r, of the circular orbit. Is it stable or unstable?

[7 points]

(c) For the case where a circular orbit exists, sketch the phase curves for the radial
motion in the (r,7) half-plane. Identify the energy ranges for bound and un-
bound orbits.

[5 points]

(c) Suppose the orbit is nearly circular, with r = r, 4+ 7, where |n| < r,. Find the
equation for the shape 1(¢) of the perturbation.
[8 points]

(d) What is the angle A¢ through which periapsis changes each cycle? For which
value(s) of ¢ does the perturbed orbit not precess?
[5 points]
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Solution

(a) The effective potential is

Uur(r) = 53 +U0)

62 T‘2
= — 1 — | .
2412 + Uy In (7‘2 + 1)2>

where p = mymy/(m, +my) is the reduced mass. For a circular orbit, we must
have U/ (r) = 0, or

I 2rUyb?

S U(r) = _rter

pr3 r2 (r? + 0?)

The solution is

r2 _ 6262
0 2ub2U, — 12

Since r2 > 0, the condition on £ is

0 < 0, = \/2ub2T,

For large r, we have
& 2 1 —4
Ueff<r): E_Uob -ﬁ+(’)(r )

Thus, for ¢ < /¢, the effective potential is negative for sufficiently large values
of r. Thus, over the range ¢ < (., we must have U, < 0, which must be a

eff ,min

global minimum, since U4(0") = 0o and U.4(o0) = 0. Therefore, the circular
orbit is stable whenever it exists.

(b) Let £ = e /.. The effective potential is then

Uue(r) = Uy f(r/0) ,

where the dimensionless effective potential is
€2 L
f(s)z;—ln(l—i—s ) .

The phase curves are plotted in Fig. 11.14.
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Figure 11.14: Phase curves for the scaled effective potential f(s) = es™2—1In(1+s7?),
with € = \% Here, € = ¢/{.. The dimensionless time variable is 7 =t - \/Uy/mb?.

(c) The energy is
E = %IU/T2 + Ueﬁ<r)

72 (dr

B 2urt \ do

)2 SO |

where we’'ve used 7 = ngr’ along with ¢ = ,ur2gz'5. Writing r = r, + 1 and

differentiating £ with respect to ¢, we find
_ﬁ277 ) /62 -

For our potential, we have

£2

_ TG g

eff

(ro) -

52
BT

52

2(1

EQ

)

The solution is

n(¢) = A cos(B¢ + )

(11.114)
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where A and § are constants.

(d) The change of periapsis per cycle is

Ap=2r(f" —1)

If > 1 then A¢p < 0 and periapsis advances each cycle (i.e.it comes sooner
with every cycle). If § < 1 then A¢ > 0 and periapsis recedes. For § = 1, which
means ¢ = +/ub?Uy, there is no precession and A¢ = 0.

[3] A particle of charge e moves in three dimensions in the presence of a uniform
magnetic field B = B 2 and a uniform electric field E = E,z. The potential
energy is

Ur,#) = —e Eyx — EBOxy ,

where we have chosen the gauge A = B,z y.
(a) Find the canonical momenta p,, p,, and p,.
[7 points]

(b) Identify all conserved quantities.
[8 points]

(¢) Find a complete, general solution for the motion of the system {z(t),y(t), z(t)}.
[10 points]

Solution

(a) The Lagrangian is
L=1im(i®+ 9>+ %) +§Boxy'+eE0x :

The canonical momenta are

——8L—mj3
Pr =9z ~
oL e
py—a—y,:my—i-—BO:c
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oL

= —— =mz
P2 = 5;

(b) There are three conserved quantities. First is the momentum p,, since

F, = 9L — (0. Second is the momentum p_, since F,, = 2& = 0. The third
Y dy z Y 0z

conserved quantity is the Hamiltonian, since %—f = 0. We have

H=p,it+p,y+p,2—L

= H=1im(i®+9*+ ) —eEyx

(c¢) The equations of motion are

i —wei = — E,
m
j+wed =0
5=0.

The second equation can be integrated once to yield y = w.(z, — x), where z,
is a constant. Substituting this into the first equation gives

. e
itwlr=wlr,+—E,.
m

This is the equation of a constantly forced harmonic oscillator. We can therefore
write the general solution as

€E0
x(t) =z, + 2 + A cos (wet + 9)

C

€E0

MWe

y(t) =yy — t — A sin (wet + 0)

Note that there are six constants, {A, 9, Ty, Yos 2o ZO}, are are required for
the general solution of three coupled second order ODEs.
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[4] An N =1 dynamical system obeys the equation

d
d—?:ru+2bu2—u3,

where 7 is a control parameter, and where b > 0 is a constant.

(a) Find and classify all bifurcations for this system.

[7 points]

(b) Sketch the fixed points u* versus r.
[6 points]
Now let b = 3. At time ¢ = 0, the initial value of w is u(0) = 1. The control
parameter r is then increased very slowly from r = —20 to r = +20, and then
decreased very slowly back down to r = —20.

(c) What is the value of u when r = —5 on the increasing part of the cycle?
[3 points]

(d) What is the value of u when r = 416 on the increasing part of the cycle?
[3 points]

(e) What is the value of u when r = +16 on the decreasing part of the cycle?
[3 points]

(f) What is the value of u when r = —5 on the decreasing part of the cycle?
[3 points]

Solution
(a) Setting @ = 0 we obtain
(u* —2bu —r)u=0.
The roots are
u=0 , u=0b=x V2 +r .

The roots at u = uy = b4 /b2 + r are only present when r > —b%. At r = —b?
there is a saddle-node bifurcation. The fixed point u = u_ crosses the fixed
point at u = 0 at » = 0, at which the two fixed points exchange stability. This
corresponds to a transcritical bifurcation. In Fig. 11.15 we plot /b versus u/b
for several representative values of 7/b?. Note that, defining @ = u/b, 7 = r/b?
and ¢ = b’t that our N = 1 system may be written

di _
dt
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Figure 11.15: Plot of dimensionless ‘velocity’ /b® versus dimensionless ‘coordinate’
u/b for several values of the dimensionless control parameter 7 = r/b?.

which shows that it is only the dimensionless combination 7 = 7/b? which enters
into the location and classification of the bifurcations.

(b) A sketch of the fixed points u* versus r is shown in Fig. 11.16. Note the
two bifurcations at r = —b? (saddle-node) and r = 0 (transcritical).

(c) For r = —20 < —b* = —9, the initial condition u(0) = 1 flows directly toward
the stable fixed point at w = 0. Since the approach to the FP is asymptotic, u
remains slightly positive even after a long time. When r = —5, the FP at u =0
is still stable. Answer: u = 0.

(d) As soon as r becomes positive, the FP at u* = 0 becomes unstable, and u
flows to the upper branch u,. When r = 16, we have v = 3+ v/32 + 16 = 8.
Answer: u = 8.

(e) Coming back down from larger r, the upper FP branch remains stable, thus,
u = 8 at r = 16 on the way down as well. Answer: u = 8.
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Figure 11.16: Fixed points and their stability versus control parameter for the N =1
system @ = ru + 2bu® — u®. Solid lines indicate stable fixed points; dashed lines
indicate unstable fixed points. There is a saddle-node bifurcation at r = —b? and a
transcritical bifurcation at » = 0. The hysteresis loop in the upper half plane u > 0
is shown. For u < 0 variations of the control parameter r are reversible and there is

no hysteresis.

(f) Now when r first becomes negative on the way down, the upper branch wu,

remains stable. Indeed it remains stable all the way down to r = —b?, the
location of the saddle-node bifurcation, at which point the solution v = wu,
simply vanishes and the flow is toward u = 0 again. Thus, for r = —5 on

the way down, the system remains on the upper branch, in which case u =
3++32—5=5. Answer: u=>5.
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