Chapter 7

Noether’s Theorem

7.1 Continuous Symmetry Implies Conserved Charges

Consider a particle moving in two dimensions under the influence of an external
potential U(r). The potential is a function only of the magnitude of the vector 7.
The Lagrangian is then

L=T-U=1Im(#+r*¢*) - U(r), (7.1)

where we have chosen generalized coordinates (7, ¢). The momentum conjugate to ¢
is p, = mr?$. The generalized force F s clearly vanishes, since L does not depend
on the coordinate ¢. (One says that L is ‘cyclic’ in ¢.) Thus, although r = r(¢) and
¢ = ¢(t) will in general be time-dependent, the combination p, = mr? ¢ is constant.
This is the conserved angular momentum about the 2z axis.

In general, whenever the system exhibits a continuous symmetry, there is an asso-
ciated conserved charge. (The terminology ‘charge’ is from field theory.) Indeed, this
is a rigorous result, known as Noether’s Theorem. Consider a one-parameter family
of transformations,

4 — 4,(q,C) (7.2)

where ( is the continuous parameter. Suppose further (without loss of generality) that
at ¢ = 0 this transformation is the identity, i.e. ,(¢,() = q,. The transformation
may be nonlinear in the generalized coordinates. Suppose further that the Lagrangian



L s invariant under the replacement ¢ — ¢q. Then we must have
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Thus, there is an associated conserved charge
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7.1.1 Examples of one-parameter families of transformations

Consider the Lagrangian

L=m(i®+9*) —U(Va?+y?) . (7.5)

In two-dimensional polar coordinates, we have

L=1im(*+ r2¢?) — U(r) , (7.6)
and we may now define
Q) =r
SO =0+C.

Note that #(0) = r and ¢(0) = ¢, i.e. the transformation is the identity when ¢ = 0.
We now have

OL d¢

_8L8r 4 0L 99
e

5 EK = mr?¢ . (7.9)

Another way to derive the same result which is somewhat instructive is to work
out the transformation in Cartesian coordinates. We then have

Z(¢) =x cos( — y sin( (7.10)
g(¢) =z sin( +y cos( . (7.11)



Thus,

oz Y
8_C =—-y() 3_C = z(() (7.12)
and
oL a:z' oL 0 o
_oLom OLOGl ey ) (7.13)
0t 0¢ o dy 0¢ o
But '
m(zy — yi) =mz-r x 7 =mrig . (7.14)
As another example, consider the potential
Ulp, ¢, 2) = V(p,a¢ + 2) (7.15)

where (p, ¢, z) are cylindrical coordinates for a particle of mass m, and where a is a
constant with dimensions of length. The Lagrangian is

ym(p° + 0% +i%) = V(p,ad + 2) . (7.16)

This model possesses a helical symmetry, with a one-parameter family

p(C) =p (7.17)
$C) = +¢ (7.18)
2(Q)=2—"Ca. (7.19)
Note that R
ap+ZzZ=ap+z, (7.20)

so the potential energy, and the Lagrangian as well, is invariant under this one-
parameter family of transformations. The conserved charge for this symmetry is
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We can check explicitly that A is conserved, using the equations of motion
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Azi(m 2g.b)—ai(m73)20 (7.24)
dat\""” dt ' '



7.2 Conservation of Linear and Angular Momen-
tum

Suppose that the Lagrangian of a mechanical system is invariant under a uniform
translation of all particles in the n direction. Then our one-parameter family of

transformations is given by
T, =x,+(n, (7.25)

and the associated conserved Noether charge is

A=n-P, (7.26)

where P =) p, is the total momentum of the system.

If the Lagrangian of a mechanical system is invariant under rotations about an
axis m, then

i - R(C? ﬁ) wa
=x,+(nxx, +0(C), (7.27)

where we have expanded the rotation matrix R((,n) in powers of (. The conserved
Noether charge associated with this symmetry is

L
A_Z;ba-ﬁxma_ﬁ-Z%Xpa_ﬁ-L, (7.28)

where L is the total angular momentum of the system.

7.3 Advanced discussion : Invariance of L vs. in-
variance of S

Observant readers might object that demanding invariance of L is too strict. We
should instead be demanding invariance of the action S!. Suppose S is invariant
under

t —t(q,t,0) (7.29)
q,(t) = 4,(¢,t,C) - (7.30)

'Indeed, we should be demanding that S only change by a function of the endpoint values.




Then invariance of S means
t, &,
s= [wL@an = [araio. (7.31)
ta ta

Note that ¢ is a dummy variable of integration, so it doesn’t matter whether we call
it ¢ or £. The endpoints of the integral, however, do change under the transformation.
Now consider an infinitesimal transformation, for which 6t = t—t and d¢ = § (ﬂ —q(t)
are both small. Invariance of S means

t, t,+ot,

. . oL - oL -.
S = /dtL(q,q,t) = /dt {L(q,q,t) + 8_%5% + a—qo(Sqa +... } , (7.32)
tq tq+0tq
where
8¢, (t) = G, (1) — ¢, (1)
= (ja (t~> - QU(E) + qa(t) - qcr(t)
= 0q, — ¢, 0t + O(dq 6t) (7.33)

Subtracting the top line from the bottom, we obtain

t,+0t,

oL |- oL |- oL d (0L -
=Lt — L, ot,+—10q,, — =—|0 dt ¢ — — — | =) p dq(t
0 bv"b a a+8qa bqa,b 8‘0 aqo,a+ / {aqa dt(@qg)} q()
ta+dtq
tb
d oL oL
= — | L— =4 — : .34
/dt dt{ ( 20 q0_> ot + i 5q0} (7.34)
ta
Thus, if ( = d( is infinitesimal, and
ot = A(q,t) 0C (7.35)

0¢, = B,(q,t) 8¢ ,
then the conserved charge is

oL . oL
A= (L 520 ) A0+ 5 Bolant)

g

= — H(q,p,t) A(q.t) + p, B, (g, 1) . (7.37)



Thus, when A = 0, we recover our earlier results, obtained by assuming invariance of
L. Note that conservation of H follows from time translation invariance: t — t + (,
for which A =1 and B, = 0. Here we have written

H=p,q,— L, (7.38)

and expressed it in terms of the momenta p_, the coordinates ¢,igma, and time ¢. H
is called the Hamiltonian.

7.3.1 The Hamiltonian

The Lagrangian is a function of generalized coordinates, velocities, and time. The
canonical momentum conjugate to the generalized coordinate ¢, is

oL

Py = a_q-g . (739)

The Hamiltonian is a function of coordinates, momenta, and time. It is defined as
the Legendre transform of L:

H(q.p.t) =Y pyd,— L. (7.40)
Let’s examine the differential of H:
dH = Z <qupo+podqg - g—q[;dqg - g—q.[; qg> - Z—J;dt
— EU: (qa dp, — g—i dqa) — %—i dt (7.41)

where we have invoked the definition of p, to cancel the coefficients of dg,. Since
p, = 0L/0q,, we have Hamilton’s equations of motion,

4y = g—i . Do = —g—Z : (7.42)
Thus, we can write
dH =" ((ja dp, — p, dqa> _ %—f dt | (7.43)
Dividing by dt, we obtain
(2—[3 = —%—? , (7.44)



which says that the Hamiltonian is conserved (i.e. it does not change with time)
whenever there is no explicit time dependence to L.

Example #1 : For a simple d = 1 system with L = $mi? — U(x), we have p = mi

and
2

H=pi—L=1mi?+U(z) = zp—erU(x). (7.45)

Example #2 : Consider now the mass point — wedge system analyzed above, with
L=3M+m)X*+mXi+ im (1 +tan’a)i® — mgz tana (7.46)

The canonical momenta are

I )
P:a—.:(M—i—m)X—l—mjs (7.47)
0X
L )
p= % =mX +m (1 + tan’a) 7 . (7.48)

The Hamiltonian is given by

H=PX +pi—1L
= Y(M +m)X® + mXi + im (1 + tan’a) i + mgx tana . (7.49)

However, this is not quite H, since H = H(X,z, P,p,t) must be expressed in terms
of the coordinates and the momenta and not the coordinates and velocities. So we
must eliminate X and & in favor of P and p. We do this by inverting the relations

(5) - (ant " m (1 +n1an2a)) ()x() (7.50)
to obtain

@() “m (M (M1+ m) tan’c) (m(l J_r;an%) M_—Tm) (];) . (751

Substituting into 7.49, we obtain

o M +m  P? cos’a Pp cos’a p?
~ 2m M +msinfa M +msin’a 2(M +m sin’a)

+mgx tana . (7.52)

Notice that P = 0 since g—)L( = 0. P is the total horizontal momentum of the system

(wedge plus particle) and it is conserved.



732 IsH=T+4+U?

The most general form of the kinetic energy is
T=T,+T,+1T,
= 5T,000 1) dp G + T (0. 1) 4y + TO(g1) (7.53)

where T),(q, ¢,t) is homogeneous of degree n in the velocities?. We assume a potential
energy of the form

U=U,+T,
= UM (g, 1) 4, + U (g, 1), (7.54)

which allows for velocity-dependent forces, as we have with charged particles moving
in an electromagnetic field. The Lagrangian is then

L=T-U=3T20q,0) 4, 4y + T t) 4, + T (g,8) = UL (g,1) G, — UO(q, 1) -
(7.55)
We have assumed U(q, t) is velocity-independent, but the above form for L =T — U
is quite general. (E.g. any velocity-dependence in U can be absorbed into the B, ¢,
term.) The canonical momentum conjugate to ¢, is

b= o = T+ T (00 — U 0,1 (7.56)
which is inverted to give
G =T (py =10+ UD) (7.57)
The Hamiltonian is then
H=p,4,—L
— 17 (b =T +UD) (= T+ UP) = Ty + U (7.58)
=T,-T,+U, . (7.59)

If T, Ty, and U, vanish, i.e. if T(q, ¢,t) is a homogeneous function of degree two in
the generalized velocities, and U(gq, t) is velocity-independent, then H =T+ U. But
if T}, or T} is nonzero, or the potential is velocity-dependent, then H # T+ U.

2A homogeneous function of degree k satisfies f(Axy,...,Ax,) = A\¥f(z,...,2,). It is then easy
to prove Euler’s theorem, Y ;| xi% =kf.
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Figure 7.1: A bead of mass m on a rotating hoop of radius a.

7.3.3 Example: A Bead on a Rotating Hoop

Consider a bead of mass m constrained to move along a hoop of radius a. The hoop
is further constrained to rotate with angular velocity w about the z-axis, as shown in
Fig. 7.1.

The most convenient set of generalized coordinates is spherical polar (r,0, ¢), in
which case

T = m(7'°2 + 1262 +r? sin29¢2)

ma® (92 +w?sin’0) . (7.60)

NI~ N

Thus, T, = %ma292 and T, = $ma’w? sin® . The potential energy is U(#) = mga(1—
cosfl). The momentum conjugate to 6 is p, = ma*@, and thus

H(87p):T2_TO+U

= %ma2é2 — ima’w? sin® 0 + mga(1 — cos6)

2
Py 1

=5 tma*w’sin® 0 + mga(1 — cos ) . (7.61)
ma

For this problem, we can define the effective potential

Ug() = U — Ty = mga(l — cos§) — tma’w?sin” 0
2
w .
= mga(l —cosf — %7 sin? (9) : (7.62)

where w, = g/a®. The Lagrangian may then be written

L= 1ma*0® — Uyg(0) , (7.63)
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Figure 7.2: The effective potential Ue(0) = mga[l — cosf — 22 gin? 6]. (The di-

~ 2wg
mensionless potential Ueg(z) = Uez/mga is shown, where x = 6/m.) Left panels:
w= % 3wp. Right panels: w = V3 w.

and thus the equations of motion are

M= ——r . 64
ma“0 %0 (7.64)

Equilibrium is achieved when Ulg(#) = 0, which gives

U, o . w® _
50 —mgasme{l—;gcosG}—O, (7.65)

ie. 0 =0, 0* = 7w, or 0* = +cos™H(w/w?), where the last pair of equilibria are
present only for w? > w?. The stability of these equilibria is assessed by examining
the sign of U/;(6*). We have

2

" (0) = mga { cos — w_2 (2cos®6 — 1)} : (7.66)

wo
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Thus,

p

mga(l—i—i) at 0* =0
0

2

5(0%) =< —mga (1 + ¢ ) at 0* =7 (7.67)

&

2 2 - 2
mga <“’—2—w—2> at 0* = 4+ cos 1<w—2) .
\ U)O w w

Thus, 6* = 0 is stable for w? < w? but becomes unstable when the rotation frequency
w is sufficiently large, i.e. when w? > w?. In this regime, there are two new equilibria,
at 0* = + cos™(w?/w?), which are both stable. The equilibrium at §* = 7 is always
unstable, independent of the value of w. The situation is depicted in Fig. 7.2.

7.4 Charged Particle in a Magnetic Field

Consider next the case of a charged particle moving in the presence of an electromag-
netic field. The particle’s potential energy is

Ulr) = q(r,t) — % Alr,t) -7 (7.68)

which is velocity-dependent. The kinetic energy is T' = %m 72, as usual. Here ¢(r) is
the scalar potential and A(r) the vector potential. The electric and magnetic fields

are given by

1 0A
E=— - — B = A . .
Vo plr Tl V x (7.69)
The canonical momentum is
oL . q

and hence the Hamiltonian is
H(r,p,t)=p-7—1L

:m'f'2+gA-7'"—%m'i'2—gA-1'°+q¢
c c

=imr’+q¢
1 2
- %< - %A(r,t)) Fqolr,t) . (7.71)

If A and ¢ are time-independent, then H(r,p) is conserved.

11



Let’s work out the equations of motion. We have

d [ OL oL
— =)= == 72
dt (87‘) or (7.72)
which gives
. qdA B q .
m’r—i—c pr qV¢+CV(A r), (7.73)
or, in component notation,
.o qO0A; . q 04 do q 0A; .
42 42 = _ Y 7.74
mwz—i_c@:cjgvj—i_c ot q@xi—i_c@xi%’ (7.74)

which is to say

(7.75)

mex, =

k qaxi c Ot ¢ Ty

Cc 8951 8xj
It is convenient to express the cross product in terms of the completely antisymmetric
tensor of rank three, €

ijk-
0A,
B = € a_xj g (7.76)
and using the result
€ijk Cimn = 6jm 5kn - 5jn 6km ) (777)
we have €, B; = 0; A, — 0, A;, and
. 8¢ q aAi q .
M= T T e o e ki B (7.78)
or, in vector notation,
. qg0A q .
= - —=——+= A
mT qVo Cat+cfr><(V>< )
—gE+%rx B, (7.79)
c

which is, of course, the Lorentz force law.

7.5 Field Theory: Systems with Several Indepen-
dent Variables

Suppose ¢,(x) depends on several independent variables: {z', 22, ..., 2"}. Further-
more, Suppose
S[{ou@)] = [dwL(6,0,0,.2) (750
2

12



i.e. the Lagrangian density L is a function of the fields ¢, and their partial derivatives
¢, /0x*. Here 2 is a region in RE. Then the first variation of S is

- oL oL 069,
(SS—/d.’L'{aT%égba‘Fa(auqsa) ax# }

n

oL oL 0 oL
= famnt s 0 / " {%a " oar (a@ma)) } e TR

of2

where 0f2 is the (n — 1)-dimensional boundary of {2, d¥' is the differential surface
area, and n* is the unit normal. If we demand 0L/9(0,¢, =0 of d¢,| 0o = 0, the
surface term vanishes, and we conclude

oS oL 0 oL
5ou(@) ~ 06, Oar (a@ma)) ' (7:82)

>‘8Q

As an example, consider the case of a stretched string of linear mass density p and
tension 7. The action is a functional of the height y(x,t), where the coordinate along
the string, x, and time, ¢, are the two independent variables. The Lagrangian density

is
oy\ > oy’
1,02} 10 22
L= 2”(8t) 27(89&) : (7.83)
whence the Euler-Lagrange equations are
oo 05 __0(ory oot
©oy(x,t) Oz \ Oy ot \ 0y

% 0%

“To MoE

(7.84)

where ¢ = % and y = %. Thus, ugj = 7y”, which is the Helmholtz equation. We’ve
assumed boundary conditions where dy(x,,t) = dy(x,,t) = dy(z,t,) = dy(x,t,) = 0.

The Lagrangian density for an electromagnetic field with sources is

L=—L1F, F"— ], A" (7.85)

" 16w

The equations of motion are then

oL 9 [ oc
(

_ — (77— v
T o\ B AU)> 0 = 8, F"™ =dnJ”, (7.86)

which are Maxwell’s equations.
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Recall the result of Noether’s theorem for mechanical systems:
d (8L aqg>
— ==\ =0, (7.87)
dt \ 9q, OC o
where ¢, = G,(q, () is a one-parameter ({) family of transformations of the generalized
coordinates which leaves L invariant. We generalize to field theory by replacing

q,(t) — ¢.(x,1) (7.88)

where {¢,(x,t)} are a set of fields, which are functions of the independent variables
{z,y,2,t}. We will adopt covariant relativistic notation and write for four-vector
a# = (ct,z,y, z). The generalization of dA/dt = 0 is

0 oL ¢,
Ozt \ 0 (0ua) OC
where there is an implied sum on both p and a. We can write this as 9, J* = 0,
where

=0, (7.89)

¢=0

oL Oy

Jb=—rnr— — .
0(0uda) OC o
We call A = J°/c the total charge. If we assume J = 0 at the spatial boundaries

of our system, then integrating the conservation law d, J* over the spatial region (2
gives

(7.90)

A
Cfi—t:/d?’maojoz—/d?’:z:V-J:—}{dEﬁ-J:O, (7.91)

Q Q o9
assuming J = 0 at the boundary 0f2.

As an example, consider the case of a complex scalar field, with Lagrangian density?

L(, 4", 0,1, 8,0p*) = 5K (9,0")(0"¢) — U (¢*™p) . (7.92)
This is invariant under the transformation v — e 1), 1* — e~ ¢*. Thus,
8_1/;_-1'( ai;*__ —i( /%
o e’ , o re T, (7.93)
and, summing over both ¢ and ¢* fields, we have
oL oL
= (i) + —— - (—i"
00,0 "t g T
K
= E(w*aw — Y O*Y*) . (7.94)

The potential, which depends on [¢|?, is independent of ¢. Hence, this form of
conserved 4-current is valid for an entire class of potentials.

3We raise and lower indices using the Minkowski metric 9 = diag (+,—, —, —).
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7.5.1 Gross-Pitaevskii Model

As one final example of a field theory, consider the Gross-Pitaevskii model, with

o) h?
L=ihg 2 Lyt Ty — g ([ o)’ (7.95)

This describes a Bose fluid with repulsive short-ranged interactions. Here ¢(x,t) is

again a complex scalar field, and ¥* is its complex conjugate. Using the Leibniz rule,
we have

0S[Y*, ] = S[Y* + oy, @H&/}]
2 2
/dt/dd {zw —+ ih 0y 8_¢_h_ V* - Vaw—;—mww*-vw

29 (|6 = np) w*awwaw*)}

/dt/dd {[— ha¢*+—vw (wﬁ—no)w*}(sw

o [0 oy )] w*} )

ot

where we have integrated by parts where necessary and discarded the boundary terms.
Extremizing S[¢*, 1| therefore results in the nonlinear Schrédinger equation (NLSE),

0 h2
it a@f o 7+ 2 (J917 — o) (7.97)
as well as its complex conjugate,
N 8w* _ h2 2, /% 2 *
—ih = =5 VT 4 2 ([]* —ng) v* . (7.98)

Note that these equations are indeed the Euler-Lagrange equations:

0SS oL 0 oL
o0~ 5w (999) .
6S oL 0 oL
Sih* - o Ot (aa#w*> ’ (7100)
with z# = (¢, z)* Plugging in
oL 5 . oc ., oc  w .
G =2 —m) v Ga iyt oo = ve (10)

4In the nonrelativistic case, there is no utility in defining z° = ct, so we simply define 2° =

15



and

oL
B

we recover the NLSE and its conjugate.

oL oL I

:zh¢—29(‘¢’2—no)¢ ) aatw*:() ) avw*:_%vwv (7102)

The Gross-Pitaevskii model also possesses a U(1) invariance, under

w(%‘ﬂf) - 7;(.’13,75) = €i<¢(w>t) ) W(aﬁﬂf) - &*<w7t) =e ¢*(:B,t) : (7'103)

Thus, the conserved Noether current is then

._ ot ol oc oi
D0t OC| 00 OC|
J? = —hy|? (7.104)
h2
J = —5i (V*V — V) . (7.105)

Dividing out by £, taking J° = —hp and J = —hj, we obtain the continuity equation,

dp

V=0, (7.106)

where

p=ll . G = o (V- V). (7.107)

are the particle density and the particle current, respectively.
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