
Chapter 7

Noether’s Theorem

7.1 Continuous Symmetry Implies Conserved Charges

Consider a particle moving in two dimensions under the influence of an external
potential U(r). The potential is a function only of the magnitude of the vector r.
The Lagrangian is then

L = T − U = 1
2
m
(
ṙ2 + r2 φ̇2

)
− U(r) , (7.1)

where we have chosen generalized coordinates (r, φ). The momentum conjugate to φ
is pφ = mr2 φ̇. The generalized force Fφ clearly vanishes, since L does not depend
on the coordinate φ. (One says that L is ‘cyclic’ in φ.) Thus, although r = r(t) and
φ = φ(t) will in general be time-dependent, the combination pφ = mr2 φ̇ is constant.
This is the conserved angular momentum about the ẑ axis.

In general, whenever the system exhibits a continuous symmetry , there is an asso-
ciated conserved charge. (The terminology ‘charge’ is from field theory.) Indeed, this
is a rigorous result, known as Noether’s Theorem. Consider a one-parameter family
of transformations,

qσ −→ q̃σ(q, ζ) , (7.2)

where ζ is the continuous parameter. Suppose further (without loss of generality) that
at ζ = 0 this transformation is the identity, i.e. q̃σ(q, ζ) = qσ. The transformation
may be nonlinear in the generalized coordinates. Suppose further that the Lagrangian
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L s invariant under the replacement q → q̃. Then we must have

0 =
d

dζ

∣∣∣∣∣
ζ=0

L(q̃, ˙̃q, t) =
∂L

∂qσ

∂q̃σ
∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂q̇σ

∂ ˙̃qσ
∂ζ

∣∣∣∣∣
ζ=0

=
d

dt

(
∂L

∂q̇σ

)
∂q̃σ
∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂q̇σ

d

dt

(
∂q̃σ
∂ζ

)
ζ=0

=
d

dt

(
∂L

∂q̇σ

∂q̃σ
∂ζ

)
ζ=0

. (7.3)

Thus, there is an associated conserved charge

Λ =
∂L

∂q̇σ

∂q̃σ
∂ζ

∣∣∣∣∣
ζ=0

. (7.4)

7.1.1 Examples of one-parameter families of transformations

Consider the Lagrangian

L = 1
2
m(ẋ2 + ẏ2)− U

(√
x2 + y2

)
. (7.5)

In two-dimensional polar coordinates, we have

L = 1
2
m(ṙ2 + r2φ̇2)− U(r) , (7.6)

and we may now define

r̃(ζ) = r (7.7)

φ̃(ζ) = φ+ ζ . (7.8)

Note that r̃(0) = r and φ̃(0) = φ, i.e. the transformation is the identity when ζ = 0.
We now have

Λ =
∑
σ

∂L

∂q̇σ

∂q̃σ
∂ζ

∣∣∣∣∣
ζ=0

=
∂L

∂ṙ

∂r̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂φ̇

∂φ̃

∂ζ

∣∣∣∣∣
ζ=0

= mr2φ̇ . (7.9)

Another way to derive the same result which is somewhat instructive is to work
out the transformation in Cartesian coordinates. We then have

x̃(ζ) = x cos ζ − y sin ζ (7.10)

ỹ(ζ) = x sin ζ + y cos ζ . (7.11)
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Thus,
∂x̃

∂ζ
= −y(ζ) ,

∂ỹ

∂ζ
= x(ζ) (7.12)

and

Λ =
∂L

∂ẋ

∂x̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂ẏ

∂ỹ

∂ζ

∣∣∣∣∣
ζ=0

= m(xẏ − yẋ) . (7.13)

But
m(xẏ − yẋ) = mẑ · r × ṙ = mr2φ̇ . (7.14)

As another example, consider the potential

U(ρ, φ, z) = V (ρ, aφ+ z) , (7.15)

where (ρ, φ, z) are cylindrical coordinates for a particle of mass m, and where a is a
constant with dimensions of length. The Lagrangian is

1
2
m
(
ρ̇2 + ρ2φ̇2 + ẋ2

)
− V (ρ, aφ+ z) . (7.16)

This model possesses a helical symmetry, with a one-parameter family

ρ̃(ζ) = ρ (7.17)

φ̃(ζ) = φ+ ζ (7.18)

z̃(ζ) = z − ζa . (7.19)

Note that
aφ̃+ z̃ = aφ+ z , (7.20)

so the potential energy, and the Lagrangian as well, is invariant under this one-
parameter family of transformations. The conserved charge for this symmetry is

Λ =
∂L

∂ρ̇

∂ρ̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂φ̇

∂φ̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂ż

∂z̃

∂ζ

∣∣∣∣∣
ζ=0

= mρ2φ̇−maż . (7.21)

We can check explicitly that Λ is conserved, using the equations of motion

d

dt

∂L

∂φ̇
=

d

dt

(
mρ2φ̇

)
=
∂L

∂φ
= −a∂V

∂z
(7.22)

d

dt

∂L

∂φ̇
=

d

dt
(mż) =

∂L

∂φ
= −∂V

∂z
. (7.23)

Thus,

Λ̇ =
d

dt

(
mρ2φ̇

)
− a d

dt
(mż) = 0 . (7.24)
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7.2 Conservation of Linear and Angular Momen-

tum

Suppose that the Lagrangian of a mechanical system is invariant under a uniform
translation of all particles in the n̂ direction. Then our one-parameter family of
transformations is given by

x̃a = xa + ζ n̂ , (7.25)

and the associated conserved Noether charge is

Λ =
∑
a

∂L

∂ẋa
· n̂ = n̂ · P , (7.26)

where P =
∑

a pa is the total momentum of the system.

If the Lagrangian of a mechanical system is invariant under rotations about an
axis n̂, then

x̃a = R(ζ, n̂) xa

= xa + ζ n̂× xa +O(ζ2) , (7.27)

where we have expanded the rotation matrix R(ζ, n̂) in powers of ζ. The conserved
Noether charge associated with this symmetry is

Λ =
∑
a

∂L

∂ẋa
· n̂× xa = n̂ ·

∑
a

xa × pa = n̂ ·L , (7.28)

where L is the total angular momentum of the system.

7.3 Advanced discussion : Invariance of L vs. in-

variance of S

Observant readers might object that demanding invariance of L is too strict. We
should instead be demanding invariance of the action S1. Suppose S is invariant
under

t→ t̃(q, t, ζ) (7.29)

qσ(t)→ q̃σ(q, t, ζ) . (7.30)

1Indeed, we should be demanding that S only change by a function of the endpoint values.
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Then invariance of S means

S =

tb∫
ta

dt L(q, q̇, t) =

t̃b∫
t̃a

dt L(q̃, ˙̃q, t) . (7.31)

Note that t is a dummy variable of integration, so it doesn’t matter whether we call
it t or t̃. The endpoints of the integral, however, do change under the transformation.
Now consider an infinitesimal transformation, for which δt = t̃−t and δq = q̃

(
t̃
)
−q(t)

are both small. Invariance of S means

S =

tb∫
ta

dt L(q, q̇, t) =

tb+δtb∫
ta+δta

dt
{
L(q, q̇, t) +

∂L

∂qσ
δ̄qσ +

∂L

∂q̇σ
δ̄q̇σ + . . .

}
, (7.32)

where

δ̄qσ(t) ≡ q̃σ(t)− qσ(t)

= q̃σ
(
t̃
)
− q̃σ

(
t̃
)

+ q̃σ(t)− qσ(t)

= δqσ − q̇σ δt+O(δq δt) (7.33)

Subtracting the top line from the bottom, we obtain

0 = Lb δtb − La δta +
∂L

∂q̇σ

∣∣∣∣
b

δ̄qσ,b −
∂L

∂q̇σ

∣∣∣∣
a

δ̄qσ,a +

tb+δtb∫
ta+δta

dt

{
∂L

∂qσ
− d

dt

(
∂L

∂q̇σ

)}
δ̄q(t)

=

tb∫
ta

dt
d

dt

{(
L− ∂L

∂q̇σ
q̇σ

)
δt+

∂L

∂q̇σ
δqσ

}
. (7.34)

Thus, if ζ ≡ δζ is infinitesimal, and

δt = A(q, t) δζ (7.35)

δqσ = Bσ(q, t) δζ , (7.36)

then the conserved charge is

Λ =

(
L− ∂L

∂q̇σ
q̇σ

)
A(q, t) +

∂L

∂q̇σ
Bσ(q, t)

= −H(q, p, t)A(q, t) + pσ Bσ(q, t) . (7.37)
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Thus, when A = 0, we recover our earlier results, obtained by assuming invariance of
L. Note that conservation of H follows from time translation invariance: t → t + ζ,
for which A = 1 and Bσ = 0. Here we have written

H = pσ q̇σ − L , (7.38)

and expressed it in terms of the momenta pσ, the coordinates qsigma, and time t. H
is called the Hamiltonian.

7.3.1 The Hamiltonian

The Lagrangian is a function of generalized coordinates, velocities, and time. The
canonical momentum conjugate to the generalized coordinate qσ is

pσ =
∂L

∂q̇σ
. (7.39)

The Hamiltonian is a function of coordinates, momenta, and time. It is defined as
the Legendre transform of L:

H(q, p, t) =
∑
σ

pσ q̇σ − L . (7.40)

Let’s examine the differential of H:

dH =
∑
σ

(
q̇σ dpσ + pσ dq̇σ −

∂L

∂qσ
dqσ −

∂L

∂q̇σ
dq̇σ

)
− ∂L

∂t
dt

=
∑
σ

(
q̇σ dpσ −

∂L

∂qσ
dqσ

)
− ∂L

∂t
dt , (7.41)

where we have invoked the definition of pσ to cancel the coefficients of dq̇σ. Since
ṗσ = ∂L/∂qσ, we have Hamilton’s equations of motion,

q̇σ =
∂H

∂pσ
, ṗσ = −∂H

∂qσ
. (7.42)

Thus, we can write

dH =
∑
σ

(
q̇σ dpσ − ṗσ dqσ

)
− ∂L

∂t
dt . (7.43)

Dividing by dt, we obtain
dH

dt
= −∂L

∂t
, (7.44)
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which says that the Hamiltonian is conserved (i.e. it does not change with time)
whenever there is no explicit time dependence to L.

Example #1 : For a simple d = 1 system with L = 1
2
mẋ2 − U(x), we have p = mẋ

and

H = p ẋ− L = 1
2
mẋ2 + U(x) =

p2

2m
+ U(x) . (7.45)

Example #2 : Consider now the mass point – wedge system analyzed above, with

L = 1
2
(M +m)Ẋ2 +mẊẋ+ 1

2
m (1 + tan2α) ẋ2 −mg x tanα , (7.46)

The canonical momenta are

P =
∂L

∂Ẋ
= (M +m) Ẋ +mẋ (7.47)

p =
∂L

∂ẋ
= mẊ +m (1 + tan2α) ẋ . (7.48)

The Hamiltonian is given by

H = P Ẋ + p ẋ− L
= 1

2
(M +m)Ẋ2 +mẊẋ+ 1

2
m (1 + tan2α) ẋ2 +mg x tanα . (7.49)

However, this is not quite H, since H = H(X, x, P, p, t) must be expressed in terms
of the coordinates and the momenta and not the coordinates and velocities. So we
must eliminate Ẋ and ẋ in favor of P and p. We do this by inverting the relations(

P
p

)
=

(
M +m m
m m (1 + tan2α)

)(
Ẋ
ẋ

)
(7.50)

to obtain(
Ẋ
ẋ

)
=

1

m
(
M + (M +m) tan2α

) (m (1 + tan2α) −m
−m M +m

)(
P
p

)
. (7.51)

Substituting into 7.49, we obtain

H =
M +m

2m

P 2 cos2α

M +m sin2α
− Pp cos2α

M +m sin2α
+

p2

2 (M +m sin2α)
+mg x tanα . (7.52)

Notice that Ṗ = 0 since ∂L
∂X

= 0. P is the total horizontal momentum of the system
(wedge plus particle) and it is conserved.
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7.3.2 Is H = T + U ?

The most general form of the kinetic energy is

T = T2 + T1 + T0

= 1
2
T

(2)
σσ′(q, t) q̇σ q̇σ′ + T (1)

σ (q, t) q̇σ + T (0)(q, t) , (7.53)

where Tn(q, q̇, t) is homogeneous of degree n in the velocities2. We assume a potential
energy of the form

U = U1 + U0

= U (1)
σ (q, t) q̇σ + U (0)(q, t) , (7.54)

which allows for velocity-dependent forces, as we have with charged particles moving
in an electromagnetic field. The Lagrangian is then

L = T − U = 1
2
T

(2)
σσ′(q, t) q̇σ q̇σ′ + T (1)

σ (q, t) q̇σ + T (0)(q, t)− U (1)
σ (q, t) q̇σ − U (0)(q, t) .

(7.55)
We have assumed U(q, t) is velocity-independent, but the above form for L = T − U
is quite general. (E.g. any velocity-dependence in U can be absorbed into the Bσ q̇σ
term.) The canonical momentum conjugate to qσ is

pσ =
∂L

∂q̇σ
= T

(2)
σσ′ q̇σ′ + T (1)

σ (q, t)− U (1)
σ (q, t) (7.56)

which is inverted to give

q̇σ = T
(2)
σσ′
−1
(
pσ′ − T (1)

σ′ + U
(1)
σ′

)
. (7.57)

The Hamiltonian is then

H = pσ q̇σ − L

= 1
2
T

(2)
σσ′
−1
(
pσ − T (1)

σ + U (1)
σ

)(
pσ′ − T (1)

σ′ + U
(1)
σ′

)
− T0 + U0 (7.58)

= T2 − T0 + U0 . (7.59)

If T0, T1, and U1 vanish, i.e. if T (q, q̇, t) is a homogeneous function of degree two in
the generalized velocities, and U(q, t) is velocity-independent, then H = T + U . But
if T0 or T1 is nonzero, or the potential is velocity-dependent, then H 6= T + U .

2A homogeneous function of degree k satisfies f(λx1, . . . , λxn) = λkf(x1, . . . , xn). It is then easy
to prove Euler’s theorem,

∑n
i=1 xi

∂f
∂xi

= kf .
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Figure 7.1: A bead of mass m on a rotating hoop of radius a.

7.3.3 Example: A Bead on a Rotating Hoop

Consider a bead of mass m constrained to move along a hoop of radius a. The hoop
is further constrained to rotate with angular velocity ω about the ẑ-axis, as shown in
Fig. 7.1.

The most convenient set of generalized coordinates is spherical polar (r, θ, φ), in
which case

T = 1
2
m
(
ṙ2 + r2 θ̇2 + r2 sin2 θ φ̇2

)
= 1

2
ma2

(
θ̇2 + ω2 sin2 θ

)
. (7.60)

Thus, T2 = 1
2
ma2θ̇2 and T0 = 1

2
ma2ω2 sin2 θ. The potential energy is U(θ) = mga(1−

cos θ). The momentum conjugate to θ is pθ = ma2θ̇, and thus

H(θ, p) = T2 − T0 + U

= 1
2
ma2θ̇2 − 1

2
ma2ω2 sin2 θ +mga(1− cos θ)

=
p2
θ

2ma2
− 1

2
ma2ω2 sin2 θ +mga(1− cos θ) . (7.61)

For this problem, we can define the effective potential

Ueff(θ) ≡ U − T0 = mga(1− cos θ)− 1
2
ma2ω2 sin2 θ

= mga
(

1− cos θ − ω2

2ω2
0

sin2 θ
)
, (7.62)

where ω0 ≡ g/a2. The Lagrangian may then be written

L = 1
2
ma2θ̇2 − Ueff(θ) , (7.63)
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Figure 7.2: The effective potential Ueff(θ) = mga
[
1 − cos θ − ω2

2ω2
0

sin2 θ
]
. (The di-

mensionless potential Ũeff(x) = Ueff/mga is shown, where x = θ/π.) Left panels:
ω = 1

2

√
3ω0. Right panels: ω =

√
3ω0.

and thus the equations of motion are

ma2θ̈ = −∂Ueff

∂θ
. (7.64)

Equilibrium is achieved when U ′eff(θ) = 0, which gives

∂Ueff

∂θ
= mga sin θ

{
1− ω2

ω2
0

cos θ
}

= 0 , (7.65)

i.e. θ∗ = 0, θ∗ = π, or θ∗ = ± cos−1(ω2
0/ω

2), where the last pair of equilibria are
present only for ω2 > ω2

0. The stability of these equilibria is assessed by examining
the sign of U ′′eff(θ∗). We have

U ′′eff(θ) = mga
{

cos θ − ω2

ω2
0

(
2 cos2 θ − 1

)}
. (7.66)
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Thus,

U ′′eff(θ∗) =



mga
(

1− ω2

ω2
0

)
at θ∗ = 0

−mga
(

1 + ω2

ω2
0

)
at θ∗ = π

mga
(
ω2

ω2
0
− ω2

0

ω2

)
at θ∗ = ± cos−1

(
ω2

0

ω2

)
.

(7.67)

Thus, θ∗ = 0 is stable for ω2 < ω2
0 but becomes unstable when the rotation frequency

ω is sufficiently large, i.e. when ω2 > ω2
0. In this regime, there are two new equilibria,

at θ∗ = ± cos−1(ω2
0/ω

2), which are both stable. The equilibrium at θ∗ = π is always
unstable, independent of the value of ω. The situation is depicted in Fig. 7.2.

7.4 Charged Particle in a Magnetic Field

Consider next the case of a charged particle moving in the presence of an electromag-
netic field. The particle’s potential energy is

U(r) = q φ(r, t)− q

c
A(r, t) · ṙ , (7.68)

which is velocity-dependent. The kinetic energy is T = 1
2
m ṙ2, as usual. Here φ(r) is

the scalar potential and A(r) the vector potential. The electric and magnetic fields
are given by

E = −∇φ− 1

c

∂A

∂t
, B = ∇×A . (7.69)

The canonical momentum is

p =
∂L

∂ṙ
= m ṙ +

q

c
A , (7.70)

and hence the Hamiltonian is

H(r,p, t) = p · ṙ − L

= mṙ2 +
q

c
A · ṙ − 1

2
m ṙ2 − q

c
A · ṙ + q φ

= 1
2
m ṙ2 + q φ

=
1

2m

(
p− q

c
A(r, t)

)2

+ q φ(r, t) . (7.71)

If A and φ are time-independent, then H(r,p) is conserved.
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Let’s work out the equations of motion. We have

d

dt

(
∂L

∂ṙ

)
=
∂L

∂r
(7.72)

which gives

m r̈ +
q

c

dA

dt
= −q∇φ+

q

c
∇(A · ṙ) , (7.73)

or, in component notation,

mẍi +
q

c

∂Ai
∂xj

ẋj +
q

c

∂Ai
∂t

= −q ∂φ
∂xi

+
q

c

∂Aj
∂xi

ẋj , (7.74)

which is to say

mẍi = −q ∂φ
∂xi
− q

c

∂Ai
∂t

+
q

c

(
∂Aj
∂xi
− ∂Ai
∂xj

)
ẋj . (7.75)

It is convenient to express the cross product in terms of the completely antisymmetric
tensor of rank three, εijk:

Bi = εijk
∂Ak
∂xj

, (7.76)

and using the result
εijk εimn = δjm δkn − δjn δkm , (7.77)

we have εijk Bi = ∂j Ak − ∂k Aj, and

mẍi = −q ∂φ
∂xi
− q

c

∂Ai
∂t

+
q

c
εijk ẋj Bk , (7.78)

or, in vector notation,

m r̈ = −q∇φ− q

c

∂A

∂t
+
q

c
ṙ × (∇×A)

= qE +
q

c
ṙ ×B , (7.79)

which is, of course, the Lorentz force law.

7.5 Field Theory: Systems with Several Indepen-

dent Variables

Suppose φa(x) depends on several independent variables: {x1, x2, . . . , xn}. Further-
more, suppose

S
[
{φa(x)

]
=

∫
Ω

dxL(φa ∂µφa,x) , (7.80)
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i.e. the Lagrangian density L is a function of the fields φa and their partial derivatives
∂φa/∂x

µ. Here Ω is a region in RK . Then the first variation of S is

δS =

∫
Ω

dx

{
∂L
∂φa

δφa +
∂L

∂(∂µφa)

∂ δφa
∂xµ

}

=

∮
∂Ω

dΣ nµ
∂L

∂(∂µφa)
δφa −

∫
Ω

dx

{
∂L
∂φa
− ∂

∂xµ

(
∂L

∂(∂µφa)

)}
δφa , (7.81)

where ∂Ω is the (n − 1)-dimensional boundary of Ω, dΣ is the differential surface
area, and nµ is the unit normal. If we demand ∂L/∂(∂µφa)

∣∣
∂Ω

= 0 of δφa
∣∣
∂Ω

= 0, the
surface term vanishes, and we conclude

δS

δφa(x)
=

∂L
∂φa
− ∂

∂xµ

(
∂L

∂(∂µφa)

)
. (7.82)

As an example, consider the case of a stretched string of linear mass density µ and
tension τ . The action is a functional of the height y(x, t), where the coordinate along
the string, x, and time, t, are the two independent variables. The Lagrangian density
is

L = 1
2
µ

(
∂y

∂t

)2

− 1
2
τ

(
∂y

∂x

)2

, (7.83)

whence the Euler-Lagrange equations are

0 =
δS

δy(x, t)
= − ∂

∂x

(
∂L
∂y′

)
− ∂

∂t

(
∂L
∂ẏ

)
= τ

∂2y

∂x2
− µ ∂

2y

∂t2
, (7.84)

where y′ = ∂y
∂x

and ẏ = ∂y
∂t

. Thus, µÿ = τy′′, which is the Helmholtz equation. We’ve

assumed boundary conditions where δy(xa, t) = δy(xb, t) = δy(x, ta) = δy(x, tb) = 0.

The Lagrangian density for an electromagnetic field with sources is

L = − 1
16π

Fµν F
µν − JµAµ . (7.85)

The equations of motion are then

∂L
∂Aν

− ∂

∂xν

(
∂L

∂(∂µAν)

)
= 0 ⇒ ∂µ F

µν = 4πJν , (7.86)

which are Maxwell’s equations.
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Recall the result of Noether’s theorem for mechanical systems:

d

dt

(
∂L

∂q̇σ

∂q̃σ
∂ζ

)
ζ=0

= 0 , (7.87)

where q̃σ = q̃σ(q, ζ) is a one-parameter (ζ) family of transformations of the generalized
coordinates which leaves L invariant. We generalize to field theory by replacing

qσ(t) −→ φa(x, t) , (7.88)

where {φa(x, t)} are a set of fields, which are functions of the independent variables
{x, y, z, t}. We will adopt covariant relativistic notation and write for four-vector
xµ = (ct, x, y, z). The generalization of dΛ/dt = 0 is

∂

∂xµ

(
∂L

∂ (∂µφa)

∂φ̃a
∂ζ

)
ζ=0

= 0 , (7.89)

where there is an implied sum on both µ and a. We can write this as ∂µ J
µ = 0,

where

Jµ ≡ ∂L
∂ (∂µφa)

∂φ̃a
∂ζ

∣∣∣∣∣
ζ=0

. (7.90)

We call Λ = J0/c the total charge. If we assume J = 0 at the spatial boundaries
of our system, then integrating the conservation law ∂µ J

µ over the spatial region Ω
gives

dΛ

dt
=

∫
Ω

d3x ∂0 J
0 = −

∫
Ω

d3x∇ · J = −
∮
∂Ω

dΣ n̂ · J = 0 , (7.91)

assuming J = 0 at the boundary ∂Ω.

As an example, consider the case of a complex scalar field, with Lagrangian density3

L(ψ, , ψ∗, ∂µψ, ∂µψ
∗) = 1

2
K (∂µψ

∗)(∂µψ)− U
(
ψ∗ψ

)
. (7.92)

This is invariant under the transformation ψ → eiζ ψ, ψ∗ → e−iζ ψ∗. Thus,

∂ψ̃

∂ζ
= i eiζ ψ ,

∂ψ̃∗

∂ζ
= −i e−iζ ψ∗ , (7.93)

and, summing over both ψ and ψ∗ fields, we have

Jµ =
∂L

∂ (∂µψ)
· (iψ) +

∂L
∂ (∂µψ∗)

· (−iψ∗)

=
K

2i

(
ψ∗∂µψ − ψ ∂µψ∗

)
. (7.94)

The potential, which depends on |ψ|2, is independent of ζ. Hence, this form of
conserved 4-current is valid for an entire class of potentials.

3We raise and lower indices using the Minkowski metric gµν = diag (+,−,−,−).
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7.5.1 Gross-Pitaevskii Model

As one final example of a field theory, consider the Gross-Pitaevskii model, with

L = ih̄ ψ∗
∂ψ

∂t
− h̄2

2m
∇ψ∗ ·∇ψ − g

(
|ψ|2 − n0

)2
. (7.95)

This describes a Bose fluid with repulsive short-ranged interactions. Here ψ(x, t) is
again a complex scalar field, and ψ∗ is its complex conjugate. Using the Leibniz rule,
we have

δS[ψ∗, ψ] = S[ψ∗ + δψ∗, ψ + δψ]

=

∫
dt

∫
ddx

{
ih̄ ψ∗

∂δψ

∂t
+ ih̄ δψ∗

∂ψ

∂t
− h̄2

2m
∇ψ∗ ·∇δψ − h̄2

2m
∇δψ∗ ·∇ψ

− 2g
(
|ψ|2 − n0

)
(ψ∗δψ + ψδψ∗)

}
=

∫
dt

∫
ddx

{[
− ih̄ ∂ψ

∗

∂t
+
h̄2

2m
∇2ψ∗ − 2g

(
|ψ|2 − n0

)
ψ∗
]
δψ

+

[
ih̄
∂ψ

∂t
+
h̄2

2m
∇2ψ − 2g

(
|ψ|2 − n0

)
ψ

]
δψ∗

}
, (7.96)

where we have integrated by parts where necessary and discarded the boundary terms.
Extremizing S[ψ∗, ψ] therefore results in the nonlinear Schrödinger equation (NLSE),

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + 2g

(
|ψ|2 − n0

)
ψ (7.97)

as well as its complex conjugate,

−ih̄ ∂ψ
∗

∂t
= − h̄2

2m
∇2ψ∗ + 2g

(
|ψ|2 − n0

)
ψ∗ . (7.98)

Note that these equations are indeed the Euler-Lagrange equations:

δS

δψ
=
∂L
∂ψ
− ∂

∂xµ

(
∂L
∂ ∂µψ

)
(7.99)

δS

δψ∗
=

∂L
∂ψ∗
− ∂

∂xµ

(
∂L

∂ ∂µψ∗

)
, (7.100)

with xµ = (t,x)4 Plugging in

∂L
∂ψ

= −2g
(
|ψ|2 − n0

)
ψ∗ ,

∂L
∂ ∂tψ

= ih̄ ψ∗ ,
∂L
∂∇ψ

= − h̄2

2m
∇ψ∗ (7.101)

4In the nonrelativistic case, there is no utility in defining x0 = ct, so we simply define x0 = t.
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and

∂L
∂ψ∗

= ih̄ ψ − 2g
(
|ψ|2 − n0

)
ψ ,

∂L
∂ ∂tψ∗

= 0 ,
∂L

∂∇ψ∗
= − h̄2

2m
∇ψ , (7.102)

we recover the NLSE and its conjugate.

The Gross-Pitaevskii model also possesses a U(1) invariance, under

ψ(x, t)→ ψ̃(x, t) = eiζ ψ(x, t) , ψ∗(x, t)→ ψ̃∗(x, t) = e−iζ ψ∗(x, t) . (7.103)

Thus, the conserved Noether current is then

Jµ =
∂L
∂ ∂µψ

∂ψ̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂ ∂µψ∗
∂ψ̃∗

∂ζ

∣∣∣∣∣
ζ=0

J0 = −h̄ |ψ|2 (7.104)

J = − h̄2

2im

(
ψ∗∇ψ − ψ∇ψ∗

)
. (7.105)

Dividing out by h̄, taking J0 ≡ −h̄ρ and J ≡ −h̄j, we obtain the continuity equation,

∂ρ

∂t
+ ∇ · j = 0 , (7.106)

where

ρ = |ψ|2 , j =
h̄

2im

(
ψ∗∇ψ − ψ∇ψ∗

)
. (7.107)

are the particle density and the particle current, respectively.
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