PHYSICS 110A : CLASSICAL MECHANICS
DISCUSSION +#2 PROBLEMS

[1] Solve the equation

Lix=7% 4 (a+b+c)i+ (ab+ ac+ bc) & + abcx = f,cos(£2t) . (1)

Solution — The key to solving this was the hint that the differential operator L; could be
written as

3 2

d d
Lt:ﬁ—i-(a%—b%—c)@+(ab+ac+bc)@+abc

~(@+a) @+ G+ ®

which says that the third order differential operator appearing in the ODE is in fact a
product of first order differential operators. Since

d
d—f—l—ax:O = z(t)=Ae (3)

we see that the homogeneous solution takes the form
z (t)=Ae” ™+ Be ™ 4 Ce™ | (4)
where A, B, and C are constants.

To find the inhomogeneous solution, we solve L; x = f, e~ and take the real part. Writing

z(t) = x5 e ™% we have
Lizge % = (a—i02) (b— i) (c — i) xye ™ (5)
and thus o
T — fO et = A(Q) 61'6 f e—iQt
07 (a—ifR2)(b—if2)(c—if) 0 ’
where
~1/2
A(R2) = |(@® + 2%) (07 + 2%) (¢ + 2| (6)
P 9 2
— =1 (22 -1 (= -1 (4
d(£2) = tan (a>—|—tan (b)+tan <c> (7)
Thus, the most general solution to L; z(t) = f, cos(f2t) is
x(t) = A(£2) f, cos (Qt — (5(!2)) L Ae ™ L Be VM4 Ot (8)

Note that the phase shift increases monotonically from §(0) = 0 to §(c0) = 2.



[2] Consider the potential
U(z) = Uy (2% — a®) (2* — 4a?) (% — 9a?) . (9)
Sketch U(x) and the phase curves.

Solution — Clearly U(x — +o00) = oo, and U(x) has zeros at * = +a, © = +2a, and
r = £3a. Setting U’'(z) = 0 we obtain = 0 and also a quadratic equation in x2, with
roots at 22 = 7a? and 22 = §a2. Plugging in, we find the three local minima, at z = +1/7a

and x = 0 are all degenerate, with U = —-36 U, a%, and the two maxima at z = j:\/ga have

U= % Uy ab. This is a nice problem for Ben Schmidel’s phase plotter.
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Figure 1: U(x) = (2? — 1) (2? — 4) (2® — 9) and associated phase curves.



[3] Consider the van der Pol oscillator,
iP42u(z®—1)i+x=0. (10)

Find and classify the fixed point(s), find the nullclines, sketch the phase flow, and argue
that a stable limit cycle exists.

Solution — With v = &, we have
t=v , 0=-z+pl-2*)v. (11)

Since both # = 0 and © = 0 at a fixed point, we find a unique fixed point at (x,v) = (0,0).
Linearizing about the fixed point, we write £ = 0 + dz, v = 0 + dv, with

M

d —N—
i () =(5 ) () w

The matrix M has trace T' = p and determinant D = +1. Thus, according to the fixed
point classification scheme derived in class and in the notes, the fixed point (0, 0) is a stable
node if y > 2 and a stable spiral if p < 2.

The nullclines are curves along which © = 0 or ¥ = 0. The equation of the = nullcline is
v =0, i.e. the z-axis. Along the z-axis, then, the flow must be purely up or down, with no
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Figure 2: Sketch of phase flow for the van der Pol system. Only the generai direction of the
flow is shown. Blue line: z nullcline; red line: v nullcline.
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Figure 3: Evolution of the van der Pol equation for p = %, starting from two initial condi-
tions. The flow spirals toward the stable limit cycle.
x component. The equation of the v nullcline is

1 T

(13)

’U:;l_xQ .

The nullclines and the flow are sketched in Fig. 2. Note that the z-component of the phase
velocity ¢ changes sign across an z-nullcline, and the v-componend of ¢ changes sign across
a v-nullcline.

The limit cycle is shown in Figs. 3 and 4.

X

Figure 4: x(t) and v(¢) (y(¢) in this plot) for the van der Pol system, with p = 2.



[4] Consider the following circuit and construct a mechanical analog.
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Figure 5: A driven L-C-R circuit, with V(t) = Vj cos(wt).

Solution — We invoke Kirchoff’s laws around the left and right loops:

L1f1+%+31(11—12)=0 (14)
1
Loly4+ Roly+ Ry (I, — 1) = V(1) . (15)

Let Q1(t) be the charge on the left plate of capacitor Cy, and define

Qa(t) = / dt' (¢ (16)
0

Figure 6: The equivalent mechanical circuit.



Then Kirchoff’s laws may be written

. Ry . . 1
Q1+i(Q1—Q2)+mQ1=O (17)

e Ro - Ry - . Vv
Gt 2+ T - 0 =T (19)

Now consider the mechanical system in Fig. 6. The blocks have masses M; and M>. The
friction coefficient between blocks 1 and 2 is by, and the friction coefficient between block
2 and the floor is by. There is a spring of spring constant k1 which connects block 1 to the
wall. Finally, block 2 is driven by a periodic acceleration f, cos(wt). We now identify

Xie0Q , Xo00Qy , beo— , by —

(19)

as well as f(t) < V(t)/La.



