
PHYSICS 110A : CLASSICAL MECHANICS
DISCUSSION #2 PROBLEMS

[1] Solve the equation

Lt x ≡ ...
x + (a + b + c) ẍ + (ab + ac + bc) ẋ + abc x = f0 cos(Ωt) . (1)

Solution – The key to solving this was the hint that the differential operator Lt could be
written as

Lt =
d3

dt3
+ (a + b + c)

d2

dt2
+ (ab + ac + bc)

d

dt
+ abc

=
( d

dt
+ a

) ( d

dt
+ b

) ( d

dt
+ c

)
, (2)

which says that the third order differential operator appearing in the ODE is in fact a
product of first order differential operators. Since

dx

dt
+ αx = 0 =⇒ x(t) = A e−αx , (3)

we see that the homogeneous solution takes the form

xh(t) = A e−at + B e−bt + C e−ct , (4)

where A, B, and C are constants.

To find the inhomogeneous solution, we solve Lt x = f0 e−iΩt and take the real part. Writing
x(t) = x0 e−iΩt, we have

Lt x0 e−iΩt = (a− iΩ) (b− iΩ) (c− iΩ) x0 e−iΩt (5)

and thus

x0 =
f0 e−iΩt

(a− iΩ)(b− iΩ)(c− iΩ)
≡ A(Ω) eiδ f0 e−iΩt ,

where

A(Ω) =
[
(a2 + Ω2) (b2 + Ω2) (c2 + Ω2)

]−1/2
(6)

δ(Ω) = tan−1
(Ω

a

)
+ tan−1

(Ω

b

)
+ tan−1

(Ω

c

)
. (7)

Thus, the most general solution to Lt x(t) = f0 cos(Ωt) is

x(t) = A(Ω) f0 cos
(
Ωt− δ(Ω)

)
+ A e−at + B e−bt + C e−ct . (8)

Note that the phase shift increases monotonically from δ(0) = 0 to δ(∞) = 3
2π.
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[2] Consider the potential

U(x) = U0 (x2 − a2) (x2 − 4a2) (x2 − 9a2) . (9)

Sketch U(x) and the phase curves.

Solution – Clearly U(x → ±∞) = ∞, and U(x) has zeros at x = ±a, x = ±2a, and
x = ±3a. Setting U ′(x) = 0 we obtain x = 0 and also a quadratic equation in x2, with
roots at x2 = 7a2 and x2 = 7

3a2. Plugging in, we find the three local minima, at x = ±
√

7 a

and x = 0 are all degenerate, with U = −36 U0 a6, and the two maxima at x = ±
√

7
3 a have

U = 400
27 U0 a6. This is a nice problem for Ben Schmidel’s phase plotter.

Figure 1: U(x) = (x2 − 1) (x2 − 4) (x2 − 9) and associated phase curves.
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[3] Consider the van der Pol oscillator,

ẍ + 2µ (x2 − 1) ẋ + x = 0 . (10)

Find and classify the fixed point(s), find the nullclines, sketch the phase flow, and argue
that a stable limit cycle exists.

Solution – With v = ẋ, we have

ẋ = v , v̇ = −x + µ(1− x2) v . (11)

Since both ẋ = 0 and v̇ = 0 at a fixed point, we find a unique fixed point at (x, v) = (0, 0).
Linearizing about the fixed point, we write x = 0 + δx, v = 0 + δv, with

d

dt

(
δx
δv

)
=

M︷ ︸︸ ︷(
0 1
−1 µ

) (
δx
δv

)
. (12)

The matrix M has trace T = µ and determinant D = +1. Thus, according to the fixed
point classification scheme derived in class and in the notes, the fixed point (0, 0) is a stable
node if µ > 2 and a stable spiral if µ < 2.

The nullclines are curves along which ẋ = 0 or v̇ = 0. The equation of the x nullcline is
v = 0, i.e. the x-axis. Along the x-axis, then, the flow must be purely up or down, with no

Figure 2: Sketch of phase flow for the van der Pol system. Only the generai direction of the
flow is shown. Blue line: x nullcline; red line: v nullcline.
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Figure 3: Evolution of the van der Pol equation for µ = 1
2 , starting from two initial condi-

tions. The flow spirals toward the stable limit cycle.

x component. The equation of the v nullcline is

v =
1
µ

x

1− x2
. (13)

The nullclines and the flow are sketched in Fig. 2. Note that the x-component of the phase
velocity ϕ̇ changes sign across an x-nullcline, and the v-componend of ϕ̇ changes sign across
a v-nullcline.

The limit cycle is shown in Figs. 3 and 4.

Figure 4: x(t) and v(t) (y(t) in this plot) for the van der Pol system, with µ = 2.
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[4] Consider the following circuit and construct a mechanical analog.

Figure 5: A driven L-C-R circuit, with V (t) = V0 cos(ωt).

Solution – We invoke Kirchoff’s laws around the left and right loops:

L1 İ1 +
Q1

C1
+ R1 (I1 − I2) = 0 (14)

L2 İ2 + R2 I2 + R1 (I2 − I1) = V (t) . (15)

Let Q1(t) be the charge on the left plate of capacitor C1, and define

Q2(t) =

t∫
0

dt′ I2(t′) . (16)

Figure 6: The equivalent mechanical circuit.
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Then Kirchoff’s laws may be written

Q̈1 +
R1

L1
(Q̇1 − Q̇2) +

1
L1C1

Q1 = 0 (17)

Q̈2 +
R2

L2
Q̇2 +

R1

L2
(Q̇2 − Q̇1) =

V (t)
L2

. (18)

Now consider the mechanical system in Fig. 6. The blocks have masses M1 and M2. The
friction coefficient between blocks 1 and 2 is b1, and the friction coefficient between block
2 and the floor is b2. There is a spring of spring constant k1 which connects block 1 to the
wall. Finally, block 2 is driven by a periodic acceleration f0 cos(ωt). We now identify

X1 ↔ Q1 , X2 ↔ Q2 , b1 ↔
R1

L1
, b2 ↔

R2

L2
, k1 ↔

1
L1C1

, (19)

as well as f(t)↔ V (t)/L2.

6


