Quasi-linear Theory
1. Motivation and Overview

The Vlasov plasma

To motivate our understanding of the structure and physics of quasi-linear theory let us
consider the simple example of a collisionless plasma in one dimension. The evolution of the
particle distribution function fk, v, ¢ is given by the Vlasov equation, '
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which is essentially the Boltzmann equation in one dimension in the absence of collisions. The
acceleration dv/dl of an individual particle of charge g and mass m will be due to the electric
field of the rest of the particles,

[
v o= ﬁ-’ E(x.¢) 1.2
where the electric field E must be calculated self-consistently from Gauss’ Law,
HE = - ufp(x. &) = - 47g [dvf(x,v.t) 13

Here the charge density p has been expressed in terms of the distribution function §A
Equivalently, we may introduce the plasma permittivity such that

€E =z E + AT P 1.4
where |
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Taking the derivative of (/.4) with respect to x and moving into Fourier space yields
£ k) = O 1.6
Thus the electric field may be calculated self-consistently from either (7.3) or equivalently k]. 6).
Let is now consider the mean evolution of f where
f= (f)*f' , (/'} z0 1.7
Here, <f> is assumed slowly evolving on a timescale y/ and the brackets <.> denote a spatial

average. The fluctuation f* in the distribution oscillates rapidly on a timescale @™ and it will be
assumed that this oscillation is very fast compared to the evolution of <S>y



Now imagine that in the unperturbed plasma the particles are balanced by immobile ions
everywhere: the electric field will be due entirely to the fluctuation in the distribution function:
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where
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Taking the average of the Vlasov equation (7 y, '} gives
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Note that (1. /0) has the generic form of a continuity equation:
o f> = -, Iy 111

where J, is the phase-space current. Furthermore, (1.10) poses an elementary moment closure
problem: <f> is determined by <£’ > which in turn is determined by <E’E’ > and so on. To
solve the problem in any statistical sense we must truncate the moment hierarchy.

The Quasi-linear approximation

The simplest closure scheme is to assume that the response of the fluctuation f” to the
perturbation £’ is purely linear ~ i.e., the fluctuations are so small that quadratic terms may be
neglected. This is the quasi-linear approximation. Thus the Viasov equation becomes
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where the second-order term on the RHS has been discarded. We make further use of the slow
evolution of <f> when compared to f’ by neglecting the time-derivative of <f> on the LHS.
Fourier-transforming the remainder, we obtain
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Equation (1.14) is the guasi-linear equation for a 1D Vlasov plasma.

It may be remarked upon immediately that (7. / 4) has the generic form of a diffusion
equation for <> in velocity-space, with 9, the diffusion coefficient, defined by (7.15) and (1.16)

Diffusion is necessarily a non-deterministic process involving some stochastic “kick” in
velocity-space. It is intrinsically irreversible; there is no way we can retrace a given particle’s
trajectory. The Vlasov equation, on the other hand, is collisionless and therefore reversible — all
particle motions can be retraced along their trajectories. There is no irreversible increase in the
entropy of the plasma. So what is the origin of the irreversibility?

As we shall see in §2, overlapping wave-particle resonances can lead to the onset of
chaotic trajectories in phase-space and this acts as the fundamental irreversibility for the quasi-
linear equation (7.14).

The format for the rest of this chapter will thus be arranged as follows:

* In §2 we will examine further the issues of irreversibility and resonance and briefly
discuss the subject of Hamiltonian chaos.

* In §3 we will ask the question: “when is quasi-linear theory valid?” and, building on the
discussion of §2 formulate a Ginzberg-style criterion predicting the theory’s breakdown.

* In §4 we discuss the energy budget for the quasi-linear equation and ask: “can we
formulate quasi-linear theory from a Fokker-Planck equation?” As we shall see, the
answer will require us to carefully differentiate between resonant and non-resonant
diffusion.

¢ Finally in §5 we address the issue of quasi-linear relaxation in the specific case of the
“bump-on-tail” instability.



2. Irreversibility and Resonance

The origin of irreversibility

In §1 we saw that the quasi-linear equation (7. / 4) had the generic form of a diffusion equation.
But what is the origin of the irreversibility underpinning the diffusion?

To answer this question we first note that, generally, quasi-linear theory is concerned
with a broad spectrum of unstable waves. In a finite system of size /. the wave-number will be
quantized (k, = n n /L where n is an integer) and we have a spectrum of waves with phase
velocities Vo, » = @ (k,) / k,. When a particle with velocity equal to Vpi, n WE exXpect wave-
particle resonance with mode » to occur: the Doppler-shifted electric fluctuations appear as a
DC field to particles whose velocity matches the phase velocity of the field and so can do work
on the particles. All other particles see an oscillatory AC field which does no work when
averaged over time. ‘

The equation of motion s governed by the Lagrangian
1
oL T T M ‘”‘I-ﬁb(‘ht) 2.1

where the electric potential @(x, 1) may be decomposed into
Pl €) = i—‘bm""’(kux"“’wt) 22
We shall assume (without loss of generality) that the zeroth resonance dominates: in this case,
the potential becomes a function of ¥ only, where '
1&:%-@3& = K-U.Pk,o'b 23
ke
We now make the assumption that the trajectory of the particle is essentially

unperturbed by the electric field, i.e., x = x, + v 1. Discussion of this approximation is deferred to
§3; for the time being we accept it without question, and (2.3) becomes
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In this frame, the Hamiltonian of the system is
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where, in the absence of an explicit dependence upon time, the Hamiltonian is a conserved
quantity: the energy E.

The phase-plane portrait of the System represented by (2.5) is sketched in fig2.1. The
seperatrix £ = 0 divides the motion into trapped SE < 0) and circulating (E > ). The width of the
seperatrix is easily shown to be 4V ~ ( g®, /m)"”,



Fig.2.1: Phase-plane portrait of a single resonance.

Systems with a single resonance are integrable: for an N degree of freedom system we
can obtain ¥ periodic variables and & conjugate constants of the motion: the action-angle
variables of the system. For an integrable system, any given trajectory is constrained to the
surface of an N-torus: fig. 2.2 shows the case of N = 2.
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Fig.2.2: Motion on a 2-torus.

If we add a small non-integrable perturbation to the Hamiltonian, i.e., more resonances,
the system is no longer integrable. It can be shown (see Ott, Tabor etc.) that for most tori, the
addition of another resonance only slightly deforms the torus; however, a few tori are
dramatically deformed and, as the non-integrable perturbation is tuned up, these tori deform

other tori nearby. Eventually, the trajectories become so deformed that they are essentiaily
locally chaotic and the orbit may be treated as stochastic.

The orbits are still confined within seperatrices however; for global chaos the
resonances must be close enough that the seperatrices between them are destroyed and orbits can
stochastically wander from resonance to resonance (see fig.2.3), leading to irreversible diffusion
in v-space. The condition_for such resonance overlap is the Chirikov criterion:
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Fig.2.3. Resonance overlap.

Resonance overlap and subsequent orbit stochasticity is the fundamental irreversibility

underpinning the quasi-linear equation. Equation (2.6} is a necessary condition for quasi-linear

theory to be valid; it is, however, not sufficient, as we shall see in the next section.



3. Validity of the quasi-linear approximation
The unperturbed orbits approximation

A key assumption in the discussion of §2 was the use of unperturbed orbits in calculating the
effect of resonances on a particle. Obviously, if the particle orbit is substantially deflected by the
changing electric field then the use of such unperturbed orbits is no longer valid and the
applicability of quasi-linear theory to the evolution of the distribution function becomes suspect.
An appropriate measure of the validity of quasi-linear theory then can be formulated by asking
when the use of unperturbed orbits is justified.

We imagine that the particle “feels” the instantaneous superposition of modes of the
electric field. There are two time-scales:

e 1 . the lifetime of the instantaneous field pattern

®  Thounce: the ‘bounce time’ for the particle within the instantaneous field pattern.
Evidently, when Ty >> Tsounce the particle will ‘bounce’ before the electric field pattern changes
and, hence, the use of unperturbed orbits is no longer justified. Alternatively, when 7ur << Tsounce

the pattern changes too rapidly for the particle to become trapped and unperturbed orbits are
satisfactory approximations.

How do we relate the timescales 7y and Zsounce to physical quantities? The bounce time
can be obtained from basic physics:

[ "
Tg,M:‘ ~ ( %"bo /M) + 3.1

The lifetime of the field pattern, however, is related to the spread in phase velocities: it is the
time taken to disperse by one wavelength & -
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One immediate consequence of (3.3) is that 7> — co for waves with equal phase and
group velocities: such waves are called non-dispersive. In fact, quasi-linear theory (and weak
turbulence theory in general) performs poorly for non- or weakly dispersive waves.



Let us rederive (3.3) in 2 more systematic fashion. Consider the electric field correlation
function defined by

C -4 <E (xc) t| ) E(‘t,tt’)x’é 34

For homogeneous and stationary fluctuations C will be a function of the space and time
intervals only. If we introduce variables x. =x; + x;and £. = #; + t> then, for homogeneous and
stationary fluctuations, C will be a function of x_ and . only, and the space-time average <.>>, ,
can be taken over the variables x, and #,. Thus,
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Performing the average yields delta-functions centred on & = -k’ and Wi = - wy. Hence
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To make further progress we assume the following form for the spectrum of the electric field
fluctuations: 2
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and, evaluating on unperturbed orbits x. = x_+ v 2. we obtain
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The first two exponents in (3.8} contain irrelevant phase information, while the third
exponent is oscillatory and will vanish on resonance, The final exponent, however, describes the
decay rate of the correlation function due to dispersal. Thus, the decay rate is set by

A (kv-wy.) : vAK -vf Ak
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Thus, the lifetime of the field pattern, or equivalently the effective autocorrelation time of the

electric field, for resonant particles (v = Vo) 15 given by

at - '
There are, therefore, four key timescales for the System:

T, | lifetime of electric field pattern for resonant particles
y' < the growth/damping time of the wave
Toounce : the trapping time

Trelax - the average distribution relaxation time.



As we saw in §2, for the <f> closure to be meaningful we muét have
* Ta ?’-I << Tretax

while the validity of the unperturbed orbit approximation requires
. Tac<< Thounce-

Finally, quasi-linear theory is valid when you have overlapping resonances and the following
time ordering:

-1
*  Tpe< y < Trelae



4.: The energy budget
Cooking the books
So far in this game we have divided the players into two camps: particles (governed by f) versus
Jields (governed by E). An equivalent and arguably more intuitive approach is to look at the

interaction between resonant particles and the wave, where the latter consists of both the field
and the non-resonant particles.

Consider, for example, a plasma oscillation. The permittivity is

€Go) =V ~ Dt/ e 4.1
Thus, the wéve energy ¥, defined by "
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The prefactor of 2 in (4. 3) indicates that both the field and the “sloshing” of the non-resonant
particles contribute to the total wave energy.

- et
The kinetic energy density % of the particles

p T
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may be calculated from the spatially-averaged Vlasov equation
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yielding
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where <E'f> was assumed to vanish at infinity in the calculation of the RHS of (4.6).

If, as in §/, we now insert the linear response of J " to the electric field fluctuations £’, we
obtain
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where 2 is the principle part of the contour integral over . Thus the kinetic energy density is
divided into two parts: the non-resonant particle kinetic energy density X" associated with
the principle part of the integral, and the resonant particle kinetic energy density K™ associated
with the delta function: 1 w @ d <Ly 1
Te'y o & 5(L-¢)IP (g1
WKz - [dv "+ T i (5-0)e, «
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To calculate the wave energy density, %) we recall that
o d
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which will have both a real and an imaginary part, € = €%y, + i y) + i €™ where Ve is the
growth/damping rate of the electric field fluctuations. Since Y << @ we can expand €7 about w;
to obtain, on rearranging
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Substituting (4. /0) into the expression gives
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From (4.9) we have x
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and so
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Comparing this with (4.8), we see that
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Note that (4.16) is essentially the Poynting theorem for plasma waves, where, for a
homogeneous system the divergence of the wave energy density flux is zero, and the <E-J>
coupling is mediated by the resonant particles, who observe £ as a DC field.

Before we proceed further it is worth considering the fate of %" when the wave
saturates. In this case, 6,% = 0 and so 6, %" = 0. In this case a plateau forms in the distribution
function as the system relaxes. We shall discuss this situation in more detail in §5.

Now, recall that & = %"+ &7 where 67 is the field energy density. If we then
regroup the terms in (4. /6) we see that

Sotod
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where 9™ = e 1 gronTes o e total particle kinetic energy density. Thus, fields and
particies also conserve energy. A direct proof of {4.17) is left to the Appendix at the end of this
chapter.

Fokker-Planck and all that

The upside of all this is that the quasi-linear diffusion coefficient Dof §1 has more going
on than meets the eye. Consider, for a weakly, non-stationary state
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where y is taken to be positive to satisfy causality (the diffusion coefficient cannot be negative).
The first term in the curly brackets in (4. 18) will be associated with resonant diffusion and the
second with non-resonant diffusion. Resonant diffusion, as the name implies, is rooted in
resonance overlap and, hence, particle stochasticity. Thus it is true, irreversible diffusion, and
can be obtained from a Fokker-Planck formulation (left as an exercise to the reader). The non-
resonant diffusion coefficient, on the other hand, given by
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where we used the equation of motion in the form
.42 3
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and replaced a factor of 2y; by a time derivative in (4.19). Thus, 2" is proportional to the
time derivative of the “sloshing” energy of the particles in the wave. The motion is therefore

12



reversible, and the non-resonant diffusion coefficient cannot be obtained from a Fokker-Pianck
formulation. :

In the stationary state y. = 0 and """ vanishes. This result is related to the fact that in
any Hamiltonian system there is a partial cancellation between the drag and drift terms in the
Fokker-Planck equation:

g <= -9y [ é%-t.?(p- o <%t:> *>] 421

For a Hamiltonian system it can be shown that

> t>
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and thus 1
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Thus there is no drag term in the Fokker-Planck equation of a Hamiltonian system,

The point of all this is that we can consider non-resonant diffusion due to the particie
“sloshing” energy as either

¢ part of the wave energy density, or

e part of the total particle kinetic energy density.

Physically, we now have a picture of the plasma as a gas of real particles (the resonant
particles) interacting with quasi-particles (the wave). The evolution of the real particles, as we
have seen, is governed by a kinetic equation (the Viasov equation) and we will show later on that

the quasi-particles are governed by a wave-kinetic equation. This is an intuitively appealing
picture and will pervade throughout the rest of this text.
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S.” An application of quasi-linear theory
The “bump-on-tail” instability

The prototypical linear instability in plasma theory is the well-known “bump-on-tail” instability.
A beam of particles of density n, and velocity v, is directed through plasma at rest. When the
beam is switched on, the distribution function of the particles looks something like fig. 5.7, with
most of the particles clustered around the centre of the distribution, and the eponymous “bump”
on the tail of the distribution representing the beam particles superimposed upon the bulk.
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Fig.5.1: The bump-on-tail instability
In the region between v; and v; the slope of the distribution function is positive and so we
expect inverse Landau damping to carry energy from the waves to the resonant particles — hence
the system is unstable. In the time-asymptotic limit we expect the linear instability to saturate; as
we shall see, this comes about by a Sattening of the distribution function around vs.
The self-consistent field equation for this system is

Erwe = O 5.1

where w(k) and y, are calculated from < f> which, as before, is governed by the diffusion

equation de“‘) = d‘,% d¢<F>

52
where, as per §4, we divide the diffusion coefficient ?into resonant and non-resonant parts
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Observe that resonant diffusion describes the dynamics of the particles in the fail of the
distribution function whereas the bulk Maxwellian is governed by non-resonant diffusion.

Consider first the resonant particles:

de fahf iE_:z = -jd"rgm(i:;f; )L 5.4
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Stationarity implies that the integrand of the RHS of this equation is zero: this can be satisfied by
either a plateau in the distribution function (i.e., 8</>/@v=0), or D"*=0, indicating that the wave
grows and then damps. In the latter case, we expect that, as 7 — oo, damping requires that
0<f>/0v < 0. We shall now show that this situation leads to a contradiction and so we expect a
plateau to form.

The resonant particie diffusion coefficient is, from (5. 3),

1 Aeddd
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where &7 is the field energy density. Thus
N = 7Y% L  Fabal (wp/y)
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Now, from (4.10) and (4.14) we have
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and the evolution equation for <f> for the resonant particles becomes,
r~
de (F) = d, dv—l% Aprlft‘s 512

Thus the generic solution to the problem is (3.7 0) and
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If we now assume that 2™°=0, we find %R&( 1:0) ‘j
wp rt
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and so <f{v, #J> = <fv, 0)> to a good approximation. For resonant velocities we saw that linear

instability requires 8<f>/8v > 0. Thus, if 2"*=0, the slope of the unstable region must be
positive for all time.

On the other hand, we saw that if we assume 9"*=0 then the waves must eventually
damp and the slope of the unstable region must become negative in the time-asymptotic limit:
the assumption of 2"*'=0 in the stationary case leads to a contradiction and hence we have
established that 9<f>/@v — 0 as t — « and a plateau forms.

Saturation of the instability

We can now immediately determine the saturation level of the instability from the
conservation of energy — in its resonant particle/wave formulation — by a Maxwell-like
construction. The initial and final configurations of the distribution function are shown in
J1g.5.2a,b. Physically, we expect the bump to be “slowed down”. The non-resonant particles in
the bulk must adjust, however, to conserve total momentum. Thus, we expect the bulk to spread
outwards, leading to a shift in the “effective temperature” of the bulk.
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Fig.5.2: (a) the initial distribution. (b) The saturated distribution.
Note that the bulk has been shifted outwards

To estimate the effect of the saturated instability on the bulk, we consider the non-
resonant particles:

Y s dy 42 L 2K
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using our expression for 2" we found in §4. In terms of the field energy then, (5./6)

becomes .
y T ot Fdd ¥ 5%
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Replacing a factor of 2y, with a time derivative and using w,” = 4nng’/m we have
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Now, let us define an “effective temperature” T,z(t) by
y AV
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We may use this new parameter to rewrite (5.18) in the form
0 (E) _ 4+ 3% f,)
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which can be shown to have the solution

5.17

5.18

5.19

5.20
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At saturation, then, the non-resonant particles are heated to a higher “effective

temperature” due to a net increase in the field energy. It should be noted, however, that this
heating is one-sided: only particles on same side of the distribution function as the bump are

heated.
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Appendix
Direct proof of 8, (3“'+ /%) = ¢

From the quasi-linear equation (7. /4) we have

b _ _ L el ¢ oKl
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where, as usual
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Finally, using €,,= 0, 2
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as required.
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