Time-stamp: <2002-03-18 11:56:24 piet>

Pure Gravity

or

Particles at Play

Volume 1:

Writing an N-Body Code

Piet Hut
Institute for Advanced Study

1 Einstein Drive
Princeton, NJ 08540
U.S.A.
piet@ias.edu

Jun Makino

University of Tokyo, Dept. of Astronomy
7-3-1 Hongo, Bunkyo-ku
Tokyo 113-0033

JAPAN
makino@astron.s.u-tokyo.ac.jp



Chapter 8

A More Modular N-Body
Hermite Code

8.1 Starting a Tool Box

In this chapter we will discuss in detail a more modular version of the Hermite code
hermite6.C, developed in the previous chapter. The new version is called nbody_sh1.C.
Here ‘sh’ stands for the shared but variable time step choice, and the number 1 indicates
again that this is the first version. This code will be the first tool of a tool box that
we will continue to develop in the rest of this book, as well as in following books in
this series. From now on, each tool will adhere to our N-body I/O format, specified in
the previous chapter (and possibly more fancy formats as well, but we will keep those
more advanced versions compatible with our current bare bones format). In addition,
each tool will have extensive comments, explaining both the usage and the internal
structure of the code.

The new code, nbody_sh1.C, has roughly four times more lines than the previous
version, hermite6.C. Almost half of these lines are either comments of blank lines, both
of which help to make the code more readable and more understandable. The fact
that the code itself still has more than twice the length of the previous version stems
from several factors. First, the new code has nine functions, besides main (), while the
old code had only two. Second, there are seven command line options, rather than
two. Third, we now declare all functions at the top of the file. Finally, there is more
diagnostics output than we had before.

Below, the full code is presented, one function at a time.

137



138 CHAPTER 8. A MORE MODULAR N-BODY HERMITE CODE

8.2 Gravitylab

Our aim is to build a powerful software environment for experiments in stellar dynamics
of dense stellar systems. The idea is to build a virtual laboratory, which we will
call gravitylab. From now on, each new tool in our tool box will have a distinctive
‘gravitylab’ header:

// Time-stamp: <2002-01-18 21:51:36 piet>

//
// I
// [__————__ i I
// . \ : I
// NI/ : I
// : /1IN N/2
S S /1IN
/1 I\ /\ N\ /| I\ /1 /\ I\ I
/L -/ / N\ [/ | I \/ | /N I___/ I
/| N /___\N\N/ | I /| /____ N1\ \/ |
// \___II \/ \V I I/ l____/ \ I___/ I I
// /|
// /1 I/ I
/1 S A S |
/¥ o // N/ /i I
*x 0 ¢//\ VARN I
LI /\ I

We will not show these headers in future code listings, but they will be there in
the source code for other tools. The three stars moving on a figure-8 orbit are inspired
by the solution presented in chapter 5. They are being observed at bottom left by the
small figure looking through a telescope.

Note the time stamp at the very first line. This is a handy feature of the emacs
editor that we have used to write this book. When you add the line “(add-hook
'write-file-hooks ’time-stamp)” to the .emacs startup file, the date and time and
user name will be updated automatically each time you write the file to disk.

8.3 Introductory Comments

Immediately following the gravitylab header, we see a lengthy comment block:

* nbody_shl.C: an N-body integrator with a shared but variable time step



8.3. INTRODUCTORY COMMENTS 139

¥ X K K K X K X K X K K K K X K X K X K K K X K K X K X K K K X K K K O K K X K X K ¥ ¥ * ¥ *

note:

Note:

(the same for all particles but changing in time), using
the Hermite integration scheme.

ref.: Hut, P., Makino, J. & McMillan, S., 1995,
Astrophysical Journal Letters 443, L93-L96.

in this first version, all functions are included in one file,
without any use of a special library or header files.

nbody_shl [-h (for help)] [-d step_size_control_parameter]
[-e diagnostics_interval] [-o output_intervall
[-t total_duration] [-i (start output at t = 0)]
[-x (extra debugging diagnostics)]

"step_size_control_parameter" is a coefficient determining the
the size of the shared but variable time step for all particles

"diagnostics_interval" is the time between output of diagnostics,
in the form of kinetic, potential, and total energy; with the
-x option, a dump of the internal particle data is made as well

"output_interval" is the time between successive snapshot outputs
"total_duration" is the integration time, until the program stops

Input and output are written from the standard i/o streams. Since
all options have sensible defaults, the simplest way to run the code
is by only specifying the i/o files for the N-body snapshots:

nbody_shl < data.in > data.out

The diagnostics information will then appear on the screen.
To capture the diagnostics information in a file, capture the
standard error stream as follows:

(nbody_shl < data.in > data.out) >& data.err

if any of the times specified in the -e, -o, or -t options are not an
an integer multiple of "step", output will occur slightly later than
predicted, after a full time step has been taken. And even if they
are integer multiples, round-off error may induce one extra step.

External data format:

The program expects input of a single snapshot of an N-body system,



140

* K X K K X K K K X K X K K K X K X X ¥ X ¥ *

version 1:

CHAPTER 8. A MORE MODULAR N-BODY HERMITE CODE

Output of each snapshot is written

Internal data format:

ml rl_x rl_y rl_z
m2 r2_x r2_y r2_z

mn rn_X rn_y rn_z

Jan 2002

in the following format: the number of particles in the snapshot n;
the time t; mass mi, position ri and velocity vi for each particle i,
with position and velocity given through their three Cartesian
coordinates, divided over separate lines as follows:

vi_x vi_y vi_z
v2_x V2_y v2_z

VO_X Vn_y vn_z

according to the same format.

The data for an N-body system is stored internally as a l-dimensional
array for the masses, and 2-dimensional arrays for the positions,
velocities, accelerations and jerks of all particles.

Piet Hut, Jun Makino

It starts with the name of the file, a brief summary with a reference to the
literature, followed by a detailed description of how to use the code. For a typical user,
this is all the information needed. As long as the user combines nbody_sh1 with other
tools from gravitylab, there is even no need to understand the external data format,
in which the N-body snapshots are written to and read from files. For those users
interested in such details, as well as in the internal format in which the data are stored
during the execution of the code, the comment block contains format information near
the end. The last few lines list the history and version numbers of the code.

8.4 Include Statements, Function Declarations, etc.

The first lines of real code start right after the introductory comments:

#include
#include
#include
#include

<iostream>
<cmath>
<cstdlib>
<unistd.h>

using namespace std;

typedef double

real;

// to include sqrt(), etc.
// for atoi() and atof()
// for getopt()

// "real" as a general name for the



8.4. INCLUDE STATEMENTS, FUNCTION DECLARATIONS, ETC. 141

// standard floating-point data type
const int NDIM = 3; // number of spatial dimensions

void correct_step(real pos[][NDIM], real vel[][NDIM],
const real acc[][NDIM], const real jerk[][NDIM],
const real old_pos[][NDIM], const real old_vel[][NDIM],
const real old_acc[][NDIM], const real old_jerk[][NDIM],
int n, real dt);
void evolve(const real mass[], real pos[][NDIM], real vel[][NDIM],
int n, real & t, real dt_param, real dt_dia, real dt_out,
real dt_tot, bool init_out, bool x_flag);
void evolve_step(const real mass[], real pos[][NDIM], real vel[][NDIM],
real acc[][NDIM], real jerk[][NDIM], int n, real & t,
real dt, real & epot, real & coll_time);
void get_acc_jerk_pot_coll(const real mass[], const real pos[][NDIM],
const real vel[][NDIM], real acc[][NDIM],
real jerk[][NDIM], int n, real & epot,
real & coll_time);
void get_snapshot(real mass[], real pos[][NDIM], real vel[][NDIM], int n);
void predict_step(real pos[][NDIM], real vel[][NDIM],
const real acc[][NDIM], const real jerk[][NDIM],
int n, real dt);
void put_snapshot(const real mass[], const real pos[][NDIM],
const real vel[][NDIM], int n, real t);
bool read_options(int argc, char *argv[], real & dt_param, real & dt_dia,
real & dt_out, real & dt_tot, bool & i_flag, bool & x_flag);
void write_diagnostics(const real mass[], const real pos[][NDIM],
const real vel[][NDIM], const real acc[][NDIM],
const real jerk[][NDIM], int n, real t, real epot,
int nsteps, real & einit, bool init_flag,
bool x_flag);

We start with #include statements to various libraries. The comments on each
line mention some of the functions used from those libraries. If we would leave out one
of these include statements, the corresponding functions listed could not be linked, and
the compiler would issue an error.

The next statement indicates that we used the standard C++ namespace. Later,
when gravitylab will have grown sufficiently large, it may be useful to create our own
namespaces, in order to avoid collisions with other programs that may use names
that are the same as we have chosen. Right now it is too early to worry about such
complications.

The typedef statement defines the word real as an alternative for the build-in
function type double. From now on we will only use the name real to indicate the



142 CHAPTER 8. A MORE MODULAR N-BODY HERMITE CODE

standard floating point type double. It is far more logical to talk about real numbers
of type real, together with the integers of type int, without using the archaic term
‘double’ that stems from the expression ‘double precision’ (long ago, the standard
precision for floating point calculations used four bytes per floating point word, leading
to the expression double precision for the now-standard eight-byte word length).

Next we introduce the symbol NDIM for the number of dimensions. So far we have
simply used the number 3 in our loops over Cartesian coordinates, but it is much better
not to have any magic numbers in a code, where a magic number is defined as anything
that is not 0 or 1. The term “NDIM” for the number of dimensions is far clearer than
a blind “3” in the middle of a piece of code. A second advantage of introducing a
symbol, rather than magic numbers, is that we can change the symbol at one place,
while guaranteeing its substitution everywhere else in the code. In the vast majority
of cases, we will do our simulations in three spatial dimensions, hence the assignment
here of the number 3 to NDIM here, but we will also encounter cases where we want to
do some experimentation in one or two dimensions. In that case, changing 3 to 1 or 2
in this line is all we need to do (apart from making sure that we have not used uniquely
three-dimensional constructs elsewhere in the code, such as for example the use of 3D
spherical harmonics).

Note that older C-style usage would have defined NDIM through the macro defi-
nition “#define NDIM 3” . Nowadays, however, it is considered good form to use the
C++ expression “const int NDIM = 3;” . Although the use of a #define macro in this
case is quite innocent, there are many other cases where the use of macros can lead to
code that is prone to confusing errors that are hard to debug. Therefore, as a matter
of style it is a good idea to avoid them as much as possible.

The following nine function declarations are necessary if we want to have the
freedom to define them in an arbitrary way in the rest of the file. The problem is that
the C compiler goes through the file in one single pass, from top to bottom. As long
as each function is invoked only after it has been seen by the compiler, there is no
problem. In the codes hermite4.C through hermite6.C, the two functions listed at the
top of the files were invoked only by main (), which was listed last. In general, however,
with many functions there may not be a unique flow of functions calls. Besides, it is
easier to follow the logic of the code if we can start with main() at the top of the file.
The latter immediately implies that we will have to declare all functions mentioned in

main().

This need for redundant information in the form of declarations is a weakness
of C++. In general, any time that a computer language forces you to duplicate in-
formation, it brings with it the danger of errors creeping in. It is easy to change the
definition of a function without changing the declaration, or vice versa. In some cases,
the compiler may catch this, but there may be other cases where overloading of func-
tion names with different argument sets makes it impossible for the compiler to catch
such mistakes. Unfortunately, we will have to live with this situation.



8.5. THE FUNCTION MAIN() 143

Another example of redundant information in our program is the description of

the command line options. Almost the same words appear once in the ‘usage’ part of
the initial commments, and twice in the function read_options() (for the help option
and the unknown option). It is possible to capture that information in a string at the
top of the program, and to echo that string in read_options(). We will make such a
modification later.

8.5 The Function main()

main -- reads option values, reads a snapshot, and launches the
integrator

int main(int argc, char *argv([])

{

real dt_param = 0.03; // control parameter to determine time step size

real dt_dia = 1; // time interval between diagnostics output

real dt_out = 1; // time interval between output of snapshots

real dt_tot = 10; // duration of the integration

bool init_out = false; // if true: snapshot output with start at t = 0
// with an echo of the input snapshot

bool x_flag = false; // if true: extra debugging diagnostics output

if (! read_options(argc, argv, dt_param, dt_dia, dt_out, dt_tot, init_out,

x_flag))

return 1; // halt criterion detected by read_options()
int n; // N, number of particles in the N-body system
cin >> n;
real t; // time
cin >> t;
real * mass = new real[n]; // masses for all particles
real (* pos) [NDIM] = new real[n] [NDIM]; // positions for all particles
real (* vel) [NDIM] = new reall[n] [NDIM]; // velocities for all particles

get_snapshot (mass, pos, vel, n);

evolve(mass, pos, vel, n, t, dt_param, dt_dia, dt_out, dt_tot, init_out,
x_flag);

delete[] mass;



144 CHAPTER 8. A MORE MODULAR N-BODY HERMITE CODE

delete[] pos;
delete[] vel;

The first six variables declared at the top of main() receive their values from the
function read options() which reads the Unix style command line arguments. Note
that each variable has a default value, which is retained unless it is changed explicitly
by the corresponding command. We discuss the usage of command line options in the
next section.

If the function read_options() detects a request for help, or the invocation of a
non-existent option, it will return the Boolean value false. In that case the statement
'read_options() is true, and program execution is halted. In C++, returning the value
0 indicates normal successful completion of the main() program, while any other value
indicates a failure of some kind or other. For simplicity we return here the value 1.

Once the options are interpreted, we are ready to read the N-body snapshot from
the standard input (which typically is redirected to read either the contents of a file,
as in nbody_shl < data.in or to receive data from another program through a pipe,
as in generate_data | nbody_sh1). Once the number of particles n has been read in,
we can allocate storage space to contain the masses and dynamical information for all
n particles, as we have seen in the previous chapter. The actual initialization of the
arrays is carried out by the function get_snapshot ().

The real work is then delegated to the function evolve(), which oversees the
evolution in time of the N-body system. When the call to evolve() returns, there is
nothing left to be done. For good form we then deallocate the memory that we had
dynamically allocated with the new operator. Note the square brackets in delete, which
tell the compiler to delete the full memory assigned to the arrays. If we would leave
this out, for example in a statement delete[] mass, we would only free the memory for
mass[0]. This would constitute a memory leak, since the rest of the array will still be
allocated, but it will be no longer usable in our program. In our particular case, this is
no problem since we are about to terminate the program anyway, but in more complex
cases, such as we will encounter in the function evolve(), it will be important to not
create memory leaks.

8.6 Command Line Options

There are six command line options, Unix style, from which we can choose. All essential
options have default values, so it is perfectly possible to run our code without specifying
any of them. For example, if we start with an N-body snapshot in an input file data. in,
we can run the code to produce a stream of snapshot data in the output file data.out,

by typing:



8.6. COMMAND LINE OPTIONS 145

|gravity> nbody_shl < data.in > data.out

This will have the exact same effect as if we would have specified the default values
for the four main options, namely the time step control parameter (0.03), the interval
between diagnostics output (1 time unit), the interval between output of snapshots (1
time unit), and the duration of the integration (10 time units):

|gravity> nbody_shl -d 0.03 -e 1 -o 1 -t 10 < data.in > data.out

If we would like to have three times smaller time steps, twice as many diagnostics
outputs and with additional information, snapshot output intervals of 5 time units but
starting at t = 0, and a total run time of 30 time units, we have to give the following
command:

|gravity> nbody_shl -d 0.01 -e 0.5 -x -0 5 -i -t 30 < data.in > data.out

The order of the arguments is unimportant, but each option that expects a value
(the -d, -e, -o, -t options) should be immediately followed by its corresponding
value. By the way, the value 0.03 as the default for the scale of the time step pa-
rameter is somewhat arbitrary. In practice, a value of 0.1 is often found to be too
large, while 0.01 is often overkill. For example, when we start from the initial condi-
tions for three stars on a figure 8 orbit, running nbody_sh1 with all default values in
place, we wind up at time t = 10 with a relative energy error of order 10~ ".

Of course, the optimal choice of values depend strongly on the particular appli-
cation, and the default values are only a hint, in a blind attempt to come up with at
least somewhat reasonable starting values. It is up to the user to make sure that these
values are appropriate in a given situation, and if not, to supply a better value after
some experimentation.

The help option can be invoked by typing:
|gravity> nbody_shl -h

This will not result in program execution, only in the printing of a short message
that lays out the various command line option choices. A similar message will appear
when we attempt to supply an non-existent option, for example:

|gravity> nbody_shl -q

nbody_shl: invalid option -- q

usage: nbody_shl [-h (for help)] [-d step_size_control_parameter]
[-e diagnostics_interval] [-o output_interval]
[-t total_duration] [-i (start output at t = 0)]
[-x (extra debugging diagnostics)]

|gravity>



146 CHAPTER 8. A MORE MODULAR N-BODY HERMITE CODE

All this behavior can be inspected in the function read_options():

read_options -- reads the command line options, and implements them.

*
*

* note: when the help option -h is invoked, the return value is set to false,
* to prevent further execution of the main program; similarly, if an

*

unknown option is used, the return value is set to false.

bool read_options(int argc, char *argv[], real & dt_param, real & dt_dia,
real & dt_out, real & dt_tot, bool & i_flag, bool & x_flag)

{
int c;
while ((c = getopt(argc, argv, "hd:e:o:t:ix")) != -1)
switch(c){
case *h’: cerr << "usage: " << argv[0]
<< " [-h (for help)]"
<< " [-d step_size_control_parameter]\n"
< " [-e diagnostics_interval]"
<< " [-o output_interval]l\n"
«< " [-t total_duration]"
<< " [-i (start output at t = 0)]\n"
< " [-x (extra debugging diagnostics)]"
<< endl;
return false; // execution should stop after help
case ’d’: dt_param = atof (optarg);
break;
case ’e’: dt_dia = atof(optarg);
break;
case ’i’: i_flag = true;
break;
case ’0’: dt_out = atof(optarg);
break;
case ’t’: dt_tot = atof(optarg);
break;
case ’x’: x_flag = true;
break;
case ’7’: cerr << "usage: " << argv[0]
<< " [-h (for help)]"
<< " [-d step_size_control_parameter]\n"
< " [-e diagnostics_interval]"

<< " [-o output_interval]l\n"

&< " [-t total_duration]"

<< " [-i (start output at t = 0)]\n"

<< " [-x (extra debugging diagnostics)]"



8.7. SNAPSHOT INPUT 147

<< endl;
return false; // execution should stop after error

return true; // ready to continue program execution

Note that the six variables corresponding to the command line arguments are all
passed by reference, so that the results are available to the calling program main().

The function getopt () is a standard C library function that can be used equally
well in C++ programs. Its third argument is a string which lists all command line
options. Each option can only consist of a single letter. Those letters that should
be followed by a value to be read in are indicated by a colon immediately following
the letter. The string "hd:e:o:t:ix" tells us that options h, i and x do not expect
additional values, while options d, e, o and t are to be followed with an argument, all
of which are of type real in our particle case. All option arguments are by default passed
as ASCII strings, so we need the function atof () to convert the ASCII information into
the proper floating point value, as we already saw in the previous chapter.

Notice that each case in the body of the switch statement is ended by either
a return statement or a break statement. The latter is necessary, since the default
behavior of switch is to ‘fall through’ from one case to the next, something that is
clearly not desirable here. After we jump out of the switch statement through a break
command, we encounter the last statement, “return true;” which tells the calling
program that all is well, and that execution can continue.

8.7 Snapshot Input

The code for snapshot input is straightforward:

[
* get_snapshot -- reads a single snapshot from the input stream cin.

*

* mnote: in this implementation, only the particle data are read in, and it

* is left to the main program to first read particle number and time

K
*/

void get_snapshot(real mass[], real pos[][NDIM], real vel[][NDIM], int n)
{
for (int i = 0; 1 < n ; i++){
cin >> mass[i]; // mass of particle i
for (int k = 0; k < NDIM; k++)



148 CHAPTER 8. A MORE MODULAR N-BODY HERMITE CODE

cin >> pos[i] [k]; // position of particle i
for (int k = 0; k < NDIM; k++)
cin >> velli] [k]; // velocity of particle i

Note that we do not check here whether a complete snapshot is being offered
on the standard input stream in the right format. It would be better to verify, for
example, that new lines
n occur in the correct places, separating each particle, and that no end-of-file condition
is encountered before the whole N-body snapshot is read in. In later versions we will
provide more complete error checking.

8.8 Snapshot Output

The code for snapshot output is similarly simple:

void put_snapshot(const real mass[], const real pos[][NDIM],
const real vel[][NDIM], int n, real t)

{
cout.precision(186); // full double precision
cout << n << endl; // N, total particle number
cout << t << endl; // current time
for (int 1 = 0; 1 < n ; i++){
cout << mass[i]; // mass of particle i
for (int k = 0; k < NDIM; k++)
cout << ’ ? << pos[i] [k]; // position of particle i
for (int k = 0; k < NDIM; k++)
cout << ’ ? << vellil[k]; // velocity of particle i
cout << endl;
}
}

Note that the masses, positions, and velocities are all declared as const in the
declaration of the function arguments. This means that this function is not allowed



8.9. REPORTING DIAGNOSTICS 149

to change the values of those particular arguments. Being able to specify function
arguments as const is a very useful C++ feature. It can help the compiler by providing
extra information; it allows the compiler to flag an error if in the body of the function an
attempt is made to change one of those arguments erroneously; and most importantly,
it gives the human reader useful information about the intentions of the programmer.

For all these reasons, it is important to be consistent in the use of const spec-
ifications, and to always use const wherever we can. When we do this, we thereby
imply that the absence of a const specifier for an argument means that we do want
to affect the value of that particular argument. For example, in the previous function
get_snapshot (), masses, positions, and velocities are not preceded by const. Indeed,
all three arrays are being initialized in that function, and it is useful to be able to
anticipate that already from looking at the argument list, either here or at the top of
the file where all functions are declared.

The first line of the body of the function sets the precision for all subsequent
output. It turns out that eight-byte double precision corresponds to about 16 digits
of relative accuracy. If we would output less than 16 significant digits for each real
variable, we would lose information. A subsequent program reading in the snapshot
that we have just written out would not have access to the full information that we had
before we wrote our data. On the other hand, if we would output those numbers with
more than 16 digits, the extra digits would be effective garbage. While this doesn’t
hurt, it is a waste of space (and possibly later processing time) to go beyond 16 digits.

8.9 Reporting Diagnostics

Here is the code for the function that writes diagnostics to the standard error stream.
Note the declarations of arguments: all arrays are specified to be const, which is
appropriate since their values should only be reported, without changing them. The
argument einit is passed by reference, since it will hold the initial value of the total
energy of the system, information that should be passed back to the calling function.
The other arguments are all passed by value.

write_diagnostics -- writes diagnostics on the error stream cerr:
current time; number of integration steps so far;
kinetic, potential, and total energy; absolute and
relative energy errors since the start of the run.
If x_flag (x for eXtra data) is true, all internal
data are dumped for each particle (mass, position,
velocity, acceleration, and jerk).

note: the kinetic energy is calculated here, while the potential energy is
calculated in the function get_acc_jerk_pot_coll().



150 CHAPTER 8. A MORE MODULAR N-BODY HERMITE CODE

void write_diagnostics(const real mass[], const real pos[][NDIM],
const real vel[] [NDIM], const real acc[][NDIM],
const real jerk[][NDIM], int n, real t, real epot,
int nsteps, real & einit, bool init_flag,
bool x_flag)

real ekin = 0; // kinetic energy of the n-body system
for (int i = 0; i < n ; i++)
for (int k = 0; k < NDIM ; k++)
ekin += 0.5 * mass[i] * vel[i][k] * vell[il [k];

real etot = ekin + epot; // total energy of the n-body system
if (init_flag) // at first pass, pass the initial
einit = etot; // energy back to the calling function
cerr << "at time t = " << t << " , after " << nsteps
<< " steps :\n E_kin = " << ekin
<< ", E_pot =" << epot
<< " | E_tot = " << etot << endl;
cerr << " "

<< "absolute energy error: E_tot - E_init ="
<< etot - einit << endl;
cerr << " "
<< "relative energy error: (E_tot - E_init) / E_init = "
<< (etot - einit) / einit << endl;

if (x_flag){

cerr << " for debugging purposes, here is the internal data "
<< "representation:\n";

for (int i = 0; i < n ; i++){
cerr << " internal data for particle " << i+l << " : " << endl;
cerr << " "
cerr << mass[il;
for (int k = 0; k < NDIM; k++)

cerr << ’ ’ << pos[i] [k];
for (int k = 0; k < NDIM; k++)
cerr << ’ ? << vell[i] [k];
for (int k = 0; k < NDIM; k++)
cerr << ’ ? << accl[i] [k];
for (int k = 0; k < NDIM; k++)
cerr << ’ 7’ << jerk[i][k];

cerr << endl;



8.10. ORBIT INTEGRATION 151

The only calculation performed in this function is that of the kinetic energy. The
potential energy is determined in the function get_acc_jerk pot_coll(). The init_flag
is set to true when write_diagnostics() is evoked for the first time, at t = 0. In that
case, we want to pass the value of the initial total energy back to the calling function
evolve(), which can use that information to compare it with later measured values of
the total energy, in order to determine the absolute and relative amounts of energy
drifts, which are a good measure of numerical accuracy.

Note that we could have defined the initial energy einit as a static variable
inside write_diagnostics(). For our present purpose that would be fine, but this type
of programming may easily create a future limitation. If some day we would like to
compare two different N-body systems, each of which evolves, we would get into a
conflict if both of them would try to access the same static variable. Therefore, for the
same reason we don’t use global variables in the first place, we prefer to pass einit as
a function variable.

8.10 Orbit Integration

We now come to the function that manages the orbit evolution, driving the Hermite
integrator and scheduling the various output operations:

[
* evolve -- integrates an N-body system, for a total duration dt_tot.

* Snapshots are sent to the standard output stream once every

* time interval dt_out. Diagnostics are sent to the standard

* error stream once every time interval dt_dia.

*

* note: the integration time step, shared by all particles at any given time,
* is variable. Before each integration step we use coll_time (short

* for collision time, an estimate of the time scale for any significant
* change in configuration to happen), multiplying it by dt_param (the

* accuracy parameter governing the size of dt in units of coll_time),

* to obtain the new time step size.

*

* Before moving any particles, we start with an initial diagnostics output

* and snapshot output if desired. In order to write the diagnostics, we

* first have to calculate the potential energy, with get_acc_jerk_pot_coll().
* That function also calculates accelerations, jerks, and an estimate for the
¥ collision time scale, all of which are needed before we can enter the main
* integration loop below.



152 CHAPTER 8. A MORE MODULAR N-BODY HERMITE CODE

* In the main loop, we take as many integration time steps as needed to
* reach the next output time, do the output required, and continue taking

* 1integration steps and invoking output this way until the final time is

* reached, which triggers a ‘break’ to jump out of the infinite loop set up

* with ‘while(true)’.

A
*/

void evolve(const real mass[], real pos[][NDIM], real vel[][NDIM],
int n, real & t, real dt_param, real dt_dia, real dt_out,
real dt_tot, bool init_out, bool x_flag)

{
cerr << "Starting a Hermite integration for a " << n
<< "-body system,\n from time t =" << t
<< " with time step control parameter dt_param = " << dt_param
<< " until time " << t + dt_tot
<< " ,\n with diagnostics output interval dt_dia = "
<< dt_dia << ",\n and snapshot output interval dt_out = "
<< dt_out << "." << endl;
real (* acc) [NDIM] = new real[n] [NDIM]; // accelerations and jerks
real (* jerk) [NDIM] = new real[n] [NDIM]; // for all particles
real epot; // potential energy of the n-body system
real coll_time; // collision (close encounter) time scale

get_acc_jerk_pot_coll(mass, pos, vel, acc, jerk, n, epot, coll_time);

int nsteps = 0; // number of integration time steps completed
real einit; // initial total energy of the system

write_diagnostics(mass, pos, vel, acc, jerk, n, t, epot, nsteps, einit,
true, x_flag);
if (init_out) // flag for initial output
put_snapshot (mass, pos, vel, n, t);

real t_dia = t + dt_dia; // next time for diagnostics output
real t_out = t + dt_out; // next time for snapshot output
real t_end = t + dt_tot; // final time, to finish the integration

while (true){

while (t < t_dia && t < t_out && t < t_end){
real dt = dt_param * coll_time;
evolve_step(mass, pos, vel, acc, jerk, n, t, dt, epot, coll_time);
nsteps++;

}

if (t >= t_dia){
write_diagnostics(mass, pos, vel, acc, jerk, n, t, epot, nsteps,



8.10. ORBIT INTEGRATION 153

einit, false, x_flag);
t_dia += dt_dia;
}
if (t >= t_out){
put_snapshot(mass, pos, vel, n, t);
t_out += dt_out;
}
if (t >= t_end)
break;

delete[] acc;
delete[] jerk;

Starting again with the argument list, we see that the mass array, as always, is
defined as const, since we do not model a mechanism for mass loss for stars, nor do
we (yet) allow collisions between stars, which could be followed by mergers that would
produce a merger remnant with a mass equal to the sum of the masses of the two
stars. The only place where we do not define the mass array as const is in the function
get_snapshot, where the mass values are read in from the standard input stream. Note
that the time t is passed by reference. In our current program, this is not necessary,
since the value of t is not used in main(), where execution is halted immediately upon
completion of the call to evolve(). However, in future extensions we may well add
further commands in main(), and in that case it would be useful to have the value of
the current time available.

As we have seen before, before we can enter the integration loop we have to start
with an initial call to the function computing the accelerations and jerks. This function,
get_acc_jerk_pot_coll() does what its name suggest: besides calculating accelerations
and jerks, it also reports the value of the total potential energy of the system as well
as the value of the time scale on which a ‘collision’ between particles can occur, i. e.
a significant change of order unity in the local configuration of at least two particles.
The latter information, stored in the variable coll_time, will be needed in the main
integration loop in order to determine the size of the first time step. Accelerations and
jerks are needed for the first part of the first integration time step, and the potential
energy is used in the initial call to write_diagnostics(), following the first call to
get_acc_jerk_pot_coll().

In addition, if the user has specified the init_out flag to be true, the input values
of the N-body system are echoed as they are on the output stream; the default behavior
is to wait with output until some integration steps have been taken. This is a sensible
default, since in many cases we are only interested in one final output snapshot, which
can then served as the input for a later invocation of the integrator. If we invoke our
program with the same value for the snapshot output interval as the duration of the



154 CHAPTER 8. A MORE MODULAR N-BODY HERMITE CODE

run, we guarantee that only one final output will be made. An example usage of this
type is:

|gravity> nbody_shl -d 0.01 -e 2 -o 40 -t 40 < data.in > data.out

Before entering the main integration loop, we schedule the next times for diag-
nostics and snapshot output, as well as the final halting time. The loop itself is an
infinite loop, governed by the tautological while (true), which is obviously always the
case. The standard C/C++ trick to define an infinite loop uses an empty for loop, in
the form for(;;), but that expression is less transparent, whereas while (true) leaves
no doubt as to it being an infinite loop. The only way to jump out of this infinite loop
is at the end of the loop: when time progresses past the halting time t_end, the break
statement causes control flow to continue past the loop.

The first time we enter the loop, the second while argument will be evaluated as
true, unless one of the three values dt_dia, dt_out or dt_tot would be zero or negative,
which would be nonsensical values. Ideally, we should check somewhere that all com-
mand line option arguments fall within reasonable ranges. Since in the present code
we have already introduced so many new features, we will not include such a defensive
programming style at this point. However, later on we will insist on checking all val-
ues which reach a program through an interface, such as presented by command line
options. For now, we will live with the danger of a non-positive value for either dt_dia
or dt_out, which combined with a positive value for dt_tot would lead to an infinite
number of output attempts, without the time ever advancing.

With natural choices of parameters, the majority of loop cycles will not lead
to any output. In those cases a new time step size is determined, and the function
evolve_step() is called, which as the name implies will advance the system by one
integration step, and in addition update the time by an amount dt. Sooner or later it
will be time for output or for ending the run. In either case, the second while statement
will evaluate as false, no integration time step will be taken and therefore the time
will not be advanced either. Instead, the required output will be done and/or the
integration will be finished altogether. If the run is not yet finished, the next cycle in
the infinite loop will lead to another integration step, and so on.

Note the freeing up of memory for acceleration and jerk arrays, at the end of
evolve(). As in the case of the memory allocation in main(), this is not strictly neces-
sary, since the program is about to finish, but again it is certainly good form to include
these statements here.

8.11 Taking a Single Integration Step

In the function evolve_step(), we encounter the first case where specific memory allo-
cation and deallocation occurs more often than once during a run:



8.11. TAKING A SINGLE INTEGRATION STEP 155

[ R e
* evolve_step -- takes one integration step for an N-body system, using the
* Hermite algorithm.

K
*/

void evolve_step(const real mass[], real pos[][NDIM], real vel[][NDIM],
real acc[][NDIM], real jerk[][NDIM], int n, real & t,
real dt, real & epot, real & coll_time)

{
real (* old_pos)[NDIM] = new reall[n] [NDIM];
real (* old_vel) [NDIM] = new real[n] [NDIM];
real (* old_acc) [NDIM] = new real[n] [NDIM];
real (* old_jerk)[NDIM] = new real[n] [NDIM];
for (int i = 0; i < n ; i++)
for (int k = 0; k < NDIM ; k++){
old_pos[il [k] = pos[i] [k];
old_vel[i] [k] = vell[i][k];
old_acc[i] [k] = acc[i][k];
old_jerk[i]l [k] = jerk[i][k];
}
predict_step(pos, vel, acc, jerk, n, dt);
get_acc_jerk_pot_coll(mass, pos, vel, acc, jerk, n, epot, coll_time);
correct_step(pos, vel, acc, jerk, old_pos, old_vel, old_acc, old_jerk,
n, dt);
t += dt;
delete[] old_pos;
delete[] old_vel;
deletel[] old_acc;
delete[] old_jerk;
}

As we have seen already in chapter 6, the Hermite code requires knowledge of
the values of all four dynamical variables at the previous time step, indicated here by
the prefix old_. Since we do not want to introduce global variables, and since these
variables are not needed outside the context of the current function, we allocate the
memory in the first four lines, and free up those memory locations in the last four lines.
If we now would omit those last four lines, the resulting memory leak could let us run
into serious trouble. For example, taking a million time steps with a hundred-body
system would cause us to loose 4 x NDIM = 12 words or 12 * 8 = 96 bytes for each
particle for each time step, leading to a total memory loss of 96 * 102 * 10% bytes or
roughly ten Gbytes, which may well be larger than the core memory of the computer



156 CHAPTER 8. A MORE MODULAR N-BODY HERMITE CODE

at hand.

Again, it would be very good if we would check with each call to new whether
there is still enough memory available. Since we do not do that here, a memory leak
will suddenly cause the program to crash, without giving us any clue of where to look.
Even using a debugger may not help, since the actual crash may well occur somewhere
else, where a small amount of legitimate memory is requested, only to find out that all
memory has just been exhausted elsewhere in the code. Once more, we will postpone
but not neglect this type of defensive programming.

After the current values of the dynamical variables have been passed to the old_
copies, we take the first half of a Hermite pass, in a call to predict_step(), followed by
a recalculation of accelerations and jerks, as well as potential energy and collision time
scale. We are then ready to complete the Hermite step through a call to correct_step(),
and update the time t.

8.12 The Predictor Step

The first half of a Hermite step is particularly simple, nothing more than a rather short
Taylor series development:

e e e et

* predict_step -- takes the first approximation of one Hermite integration
step, advancing the positions and velocities through a

* Taylor series development up to the order of the jerks.

A

x/

void predict_step(real pos[][NDIM], real vel[][NDIM],
const real acc[][NDIM], const real jerk[][NDIM],
int n, real dt)

{
for (int 1 = 0; 1 < n ; i++)
for (int k = 0; k < NDIM ; k++){
pos[i]l [k] += vel[i] [k]*dt + acc[i] [k]*dt*dt/2
+ jerk[i] [k] *dt*dt*dt/6;
vel[i] [k] += acc[i][k]*dt + jerk[i] [k]*dt*dt/2;
}
}

Notice how much we can already read off from the way the arguments to predict_step()
are declared: accelerations and jerks are passed as const variables, whereas positions
and velocities are not. This implies that the latter two are updated, whereas the former



8.13. THE CORRECTOR STEP 157

two are used to provide information for the update, without being changed themselves.
This of course is exactly what happens.

8.13 The Corrector Step

The second half of a Hermite step is again a Taylor series development, this time to a
higher order than in the predictor step, even though this is not obvious from the way
it is written. We refer to the discussion in the beginning of chapter 6, where the Taylor
series character of the corrector step is made explicit. Here is the code:

[
* correct_step -- takes one iteration to improve the new values of position
* and velocities, effectively by using a higher-order
* Taylor series constructed from the terms up to jerk at
* the beginning and the end of the time step.
S
*/

void correct_step(real pos[][NDIM], real vel[][NDIM],
const real acc[][NDIM], const real jerk[][NDIM],
const real old_pos[][NDIM], const real old_vel[][NDIM],
const real old_acc[][NDIM], const real old_jerk[][NDIM],
int n, real dt)

{
for (int i = 0; i < n ; i++)
for (int k = 0; k < NDIM ; k++){
vel[i] [k] = old_vell[il[k] + (old_acc[il[k] + acc[il[k])*dt/2
+ (old_jerk[i]l[k] - jerk[il[k])*dt*dt/12;
pos[il[k] = old_pos[il[k] + (old_vellil[k] + vell[i] [k])*dt/2
+ (old_accl[il[k] - accl[i][k])*dt*dt/12;
}
}

8.14 Where All the Work is Done

We now arrive at the core function of nbody_sh1.C, where all the hard work is being
done. In addition, this function is both the longest and the most complicated among
the ten functions in the file. The main reason for the complexity is that we are trying
to accomplish four things in one function, as the name indicates. While calculating
accelerations and jerks are logically related, the calculation of the potential energy and
the collision time is more a matter of convenience with little natural or logical relation



158

CHAPTER 8. A MORE MODULAR N-BODY HERMITE CODE

to the calculation of the first two. The main reason for bundling these four operations
is efficiency. Here is the code:

get_acc_jerk_pot_coll -- calculates accelerations and jerks, and as side
effects also calculates potential energy and
the time scale coll_time for significant changes
in local configurations to occur.

I -—=> - I

M M I r v I

-—> j -—> -—> j | --> ji o ji -——> |
a == =-------- T ; j = - | v -3 - r

ji [-——> 13 ji ji [-=> 131 ji [--> 12 ji |

l r | lr | | [ r | I

| il [ ji |l 1__ | il 1

note: it would be cleaner to calculate potential energy and collision time
in a separate function. However, the current function is by far the
most time consuming part of the whole program, with a double loop
over all particles that is executed every time step. Splitting off
some of the work to another function would significantly increase
the total computer time (by an amount close to a factor two).

We determine the values of all four quantities of interest by walking
through the system in a double {i,j} loop. The first three, acceleration,
jerk, and potential energy, are calculated by adding successive terms;
the last, the estimate for the collision time, is found by determining the
minimum value over all particle pairs and over the two choices of collision
time, position/velocity and sqrt(position/acceleration), where position and
velocity indicate their relative values between the two particles, while
acceleration indicates their pairwise acceleration. At the start, the
first three quantities are set to zero, to prepare for accumulation, while
the last one is set to a very large number, to prepare for minimization.
The integration loops only over half of the pairs, with j > i, since
the contributions to the acceleration and jerk of particle j on particle i
is the same as those of particle i on particle j, apart from a minus sign
and a different mass factor.

void get_acc_jerk_pot_coll(const real mass[], const real pos[][NDIM],

const real vel[][NDIM], real acc[][NDIM],
real jerk[][NDIM], int n, real & epot,
real & coll_time)

for (int i = 0; i < n ; i++)



8.14. WHERE ALL THE WORK IS DONE 159
for (int k = 0; k < NDIM ; k++)
acc[il[k] = jerk[il[k] = 0;
epot = 0;
const real VERY_LARGE_NUMBER = 1e300;
real coll_time_q = VERY_LARGE_NUMBER; // collision time to 4th power
real coll_est_g; // collision time scale estimate
// to 4th power (quartic)
for (int i = 0; 1 < n ; i++){
for (int j = i+1; j < n ; j++){ // rjil[l is the vector from
real rji[NDIM]; // particle i to particle j

real vji[NDIM]; // vjill =d rjill / d t

for (int k = 0; k < NDIM ; k++){

rjilk] = pos[jl[k] - pos[il[k];

vjilk]l = vell[jl[k] - vellil[k];
}
real r2 = 0; // | rji |°
real v2 = 0; // 1 vii |”
real rv_r2 = 0; // ( rij

for (int k = 0; k < NDIM ; k++){
r2 += rjilk] * rjilk];
v2 += vjilk] * vjilk];
rv_r2 += rjilk] * vjilk];

}

rv_r2 /= r2;

real r = sqrt(r2); // 1 rji |
real r3 = r * r2; // | rji |~

2
2

3

Svij ) /1 rji 12

// add the {i,j} contribution to the total potential energy for the system:

epot —= mass[i] * mass[j] / r;

// add the {j (i)} contribution to the {i (j)} values of acceleration and jerk:

real dal[3]; // main terms in pairwise

real dj[3]; // acceleration and jerk

for (int k = 0; k < NDIM ; k++){

dalk] = rjilk] / r3;

djlk] = (vjilk]l] - 3 * rv_r2 * rjil[k]) / r3;
}
for (int k = 0; k < NDIM ; k++){

acc[i] [k] += mass[j] * dalk];

acc[jl[k] -= mass[i] * dalk];

jerk[i] [k] += mass[j] * dj[k];

jerk[jl[k] -= mass[i] * dj[k];

// see equatiomns
// in the header

//
//
//
//

using symmetry
find pairwise
acceleration
and jerk

// first collision time estimate, based on unaccelerated linear motion:



160 CHAPTER 8. A MORE MODULAR N-BODY HERMITE CODE

coll_est_q = (r2*r2) / (v2*v2);
if (coll_time_q > coll_est_q)
coll_time_q = coll_est_q;

// second collision time estimate, based on free fall:

real da2 = 0; // da2 becomes the
for (int k = 0; k < NDIM ; k++) // square of the
da2 += da[k] * dalk]; // pair-wise accel-
double mij = mass[i] + mass[j]; // eration between
da2 #= mij * mij; // particles i and j

coll_est_q = r2/da2;
if (coll_time_q > coll_est_q)
coll_time_q = coll_est_q;

} // from q for quartic back
coll_time = sqrt(sqrt(coll_time_q)); // to linear collision time

Notice the distribution of const declarations here, which is just the opposite from
what we saw in predict_step() and correct_step(). In the latter two accelerations
and jerk were const while positions and velocities were updated. Here the roles are
reversed. In addition, there are two variables that are called by reference, epot and
coll_time, which enable the information about potential energy and collision time to
flow back to the calling function evolve_step() and from there back to evolve(), where
they are used, as we have seen above.

After preparing the proper initial values for the four variables of interest, we
enter the {7, j} loop running over all particle pairs. As we have seen in the previous
two chapters, we first compute a number of auxiliary quantities before we are ready to
calculate first the contribution of a pair of particles to the potential energy and then
their mutual contributions to each others acceleration and jerk.

At the end of the loop, we compute the two different collision time step estimates,
in the same way we discovered at the end of the previous chapter. The first estimate
follows the approximate of unperturbed linear motion, extrapolating current separation
and rate of change of separation in order to guess when the particles will change their
relative configuration substantially. The second estimate neglects the current rate
of change of the pairwise separation, estimating instead the free-fall time of the two
particles, in case they would start off at rest. In practice, the smaller of the two
estimates provides a reasonably safe estimate for the time scale on which significant
changes in configuration can occur.



8.15. CLOSING LOGO 161

8.15 Closing Logo

At the very end of our file, we add a simpler version of the gravitylab logo that we
encountered at the top of the file:

[ R e
* N\ o
* end of file: nbody_shl.C /A\\ 0
* /\ I
*/

It contains the name of the file, for consistency, and it guarantees that no part
of the file has been truncated in a process of copying, editing or transmission over the
net. While such mishaps are very rare nowadays, they still can occur occasionally, and
it seems prudent to mark the intended end of the file. Meanwhile, our intrepid observer
has changed directions from which to observe the world.



