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1 Introduction

Recently, there has been a great deal of interest in nonholonomic
systems. For example; R. Brockett ([1]) studied the theory and
control for a class of motors designed by Pansonic Company ([2]).
Relying on the principle of holonomy ( See ([3]), this class of mo-
tors could excel, in terms of mass-to-torgue ratio, the traditional
D.C. motors by several orders of magnitude. T. Kane and M.
Scher ([4]) looked at the falling cats problem. They explained how
falling cats can manage to land on their feet even released from
complete rest while upside-down; C. Frohlich ({5]) examined how a
diver or a gymnast can do rotational inaneuvers in midair without
violating angular momentum conservation; M. Berry ([6]) studied
the phase shifting problem of a bead moving in a slowly rotating
hoop. He established a general principle, known as the holonomy
principle, underling all the previous problems. J. Marsden, R.
Montgomery and R. Ratiu ([7]) presented a unified framework for
systematically studying these problems.

In robotics research, an interesting area is legged locomotion
vehicles. Several working systems have been reported in ([8], [9]).
In particular, Raibert'’s biped machine is capable of performing
forward somersault. Forward somersault, or flip, is a gymnastic
maneuver in which the performer runs forward, springs off the
ground with booth feet, rotates the body forward through 360°
degrees, and lands in a balauced posture on one or both feet.
Human gymnasts can do a forward flip as an isolated maneuver
or as part of a floor routine in which the flip is proceeded and
followed by other maneuvers. The best gymnasts can do double
and even triple flips. The average teenager can learn to do a
forward flip in a few weeks with proper coaching and practice.

In this report we study the dynamics of a planar cat (see
Figure 1) and then propose several possible strategies that a cat
can use to perform forward somersault. The notation used here
follows closely that of {10].

2 Dynamics

Consider a free-fall configuration of the planar cat shown in Figure
1a. A special case of this, which we shall call the symmetrical cat,
is shown in Figure 1b. Let C, be the inertia reference frame, C,
the frame which is fixed to the mass center of the biped and has
the same orientation as the inertia frame. Let C;,i = 1,2,3, be
the frame fixed to the mass center of body i. A configuration
of C; relative to C, is described by an element (r;, R(6;)) of the
Euclidean group SE(2) of R2. Note that r; € R? describes the
position of, and

R@®:) = [ ] € 50(2)

describes the orientation of, C;. Let r? be the position vector of C;
relative to C,. The following procedure derives the total kinetic

cosl; —siné;
sinf; cosé;
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Figure 1: (a) A planar cat, (b) a symmetrical cat.



energy of the system. First, the kinetic energy of body i is given
by the following integral

. o d
Ki= 3 [, AXOIGROIX 4% ()

where p(X;) is the mass density function, and B, is the set of R?
occupied by body i.
Expanding (1) gives

K= 5 [ o) (MRO)XP + 2R(0)Xs, 7 + I7F) 4,
2)

Since C; is positioned at the mass center of body i, the second
term in (2) vanishes, i.e.,

[ AXI R8I 71X = (08) [ AX)XidXer 1) = 0.
B 2
Write X; = (7, )7, and let
L= [ AXO + v daidy
be the moment of inertia about the Z— axis, and
mi = [ AXi)dzidy,

the mass of body i. Then, the kinetic energy integral (2) can be
further simplified to

K, 1

1 R
i = ghw! + omillfil.

@)
where w; = #; is the angular velocity of body i.

Summing (3) over i yields the total kinetic energy of the
system .

1 =3 1 =3
K= 521;'»,? + EZm;"ﬂll?. 4)
=1 =1

In order to decouple rotational motion from translational motion,
we need to express the kinetic energy (4) as the sum of a transla-
tional component of the mass center and a rotational component
about the mass center of the system. For this, Figure 1 reveals
the following kinematic relations.

ri=r+rf,i=123.

(5)
Substituting (5) into the second component of (4) yields
=3

1 =3 . 1 i 1 i
1S mildl = 2l + 2 3 mallsgi?
=1

=1

(6)

where we have used the fact that

=3

- mii,i)=0

=1
as Cp is positioned at the mass center of the system, and

=3

m=Sm
i=1

is the total mass.
Furthermore, the following kinematic relations are straight-

forward from Figure 1.
- d
r=r+ R(on[ : ] + R(ﬂz)[ o’ ] @)
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and
d d,
re=n+ RO | 0|+ RrE)| T ()
Substituting (7) and (8) into the following equation
i=3
=r—-r=r— E(;r;, € = m;/m,
‘ i=1
yields -~
r;’ = (l - 61)1’] — €Ty — €373 (9)

(62 - (3)R(01) [ g ] - (zR(oz) [ (:; ] - E3R(03) [ 6:’2 ]

We can then write (see Figure 1)

rs’+R(o,)[ ‘0"]+sz)[ 'f;]

3

I

(62 — €3 — I)R(Ol) [ g ]

-+

(1 - 2)R(8;) [ t:; ] — €3R(63) [ ‘:: ] (10)

and

]

3 '7+R(9l)[g]+R(93)[‘:;]

(1 + €2 — e3)R(#1) [ g ] — e2R(0;) [ ':; ]

d.
+ (1-e)R(8:) [ o ] an
Thus, differentiating r? with respect to time ¢, yields
131 = (e2 - &)’ d*wi + Gdiw] + Sdjw]
- 2(2((2 - €3)dd] €os 021111["}1 (12)

2¢3(€2 — €3)dd; cos O3y w1w3 + 2€2€3dyd3 cos O3wamw3

where 0;; = 0;- — 0; denotes the relative orientation of body ¢ with
respect to body j, and

19817 = (14 & — e)’dw? + (1 - )*d}w? + 2dyw?

+ 2(62 — €3 — l)(l - Eg)dlﬂ C08921w|wz

—  2e3(€3 — €3 — 1)dd; cos 03 waw,y

- 263(1 - Cz)dldq cos 032wgw3; (13)
I31? = (14 & - &)’ dw] + §din] + (1 - &) d3w}

2(1 + €2 — e3)eadd) cos O3y w402
2(1 + €2 — e3)(1 — €3)dd cos 03wy w3
2(2(1 - (3d|d1 cos 0:'32102")3.

+

(14)

Combining (12), (13), (14), and (6) with (4), and rearranging
the results, we can write the total kinetic energy in the form
.1 1

K = ~wTJw+ smjji||? (15)
2 2
where w = (wy, wy,w3)T is the angular velocity vector of the
system, andJ is the symmetric moment of inertia matrix, given
by
L A A
Az L A

PYFRID PR

J=



where
L = I —a)l+(l+a—-6)l+(1+e—e))d
I.l 1+ {(;z o) 4 (2 + ;‘; &2 2+ 2-e)) In order to land safely, the cat has to complete the maneuver
1_2 = L+ {62:' (1-e) 2+ 621} 1 before T'. We discuss how this can be done in the next section.
L = L+{26+(1-€)’}d; Note that for symmetric cat, the equations of motion (the
and rotational component) becomes
Mz = {eez~€3)+ (€2 — €3 —1)(1 — €2) — (1 + €2 — €3)€3} ddy cos O3 J6+ N(9,6) = PTr, (22)
M3 = {~a(g-a)-ale-a-1)+(1+e-e)(1-e)}dd, cos O e =
A2z = {eae3 — €3(1 — €3) — €2(1 — €3)} dyd;y cos b, . X
» A (lfll sin 021 0% hd ddz sin 931 9%
Note that for the symmetrical cat, i.e., d = 0,d; = d3 = 4y, N(8,0) = | —dd, sin 8y 62 — €(3¢) - 2)dydysin O3y a2
€ = €3 2 €1, entries of the moment of inertia matrix get simplified ddysin 03107 + €3¢t — 2)dydy sin 0325%
to
. . . 3 veri tegies
L = h h=h+@d+0-afld, h=h+l2d+0-apqd Maneuvering Strateg
A1z = 0, A3 =0, Az = (3¢ — 2)d} cos b3;. In this section, we discuss possible strategies which a cat can use

to perform forward or backward somersault.

Since rotational motion and translational motion are decou-
V =mgr, (16) pled from each other, the configuration space in consideration will
be the orientation space, @ = S! x S! x S!, of the system.
1 1 The tangent bundle of Q, denoted as TQ, consists of
L= -inJw+ 5m||r'||2 — mgr,. (17) pairs {(f,w),0 € Q,w € Tg¢Q}, whereas a configuration § =
(0,,02,03) € Q gives the orientation of the cat relative to the
inertia reference frame.

The Lagrangian defines a function on 7Q:

The potential energy of the cat is

and the Lagrangian of the cat is

Once the cat is airborne, the only external force acting on
is the gravity force. The legs, on the other hand, are acted on
by internal torques from the body, namely, torques applied to the

R 1. .
motors located at the hinges. Let § = [ g ] be the gravitational L:TQ — R,(0,6)— 507,1(0)9.

n A When the cat is in the air, its angular momentum is conserved.
force vector, and 7 = 2 be the input torque vector. Then, This conservation law arises from the rotational symmetry of the
the Lagrangian equations of motion of the system are system. In other words, let G = S! be the rotational group of

0 1 -1 R2, then the configuration space is acted on by G by rotation as
! - follows:
%8_% - %:;ﬂr,o: |, PT= 1 o |us
96 6, 0 1 GXQ — Q:(a,(01,02,05)— (01 + a0+, 03+0a)2 0+a.
aL . . . .
di.i;_l' - —mg. (19) Since J(8) depends on 6;;,7 < j, only, the Lagrangian is
t .’ ) r . invariant under this action. The Lie algebra, G, of G can be
Using (17) in the above equations, we have identified with the real line R. For £ = 1 € G, the infinitesimal
Jé + N(0,6)=PTr, (20)  generator £o(f) is simply
Ff = ﬁ (21) d
(0 41,0+ 1,63+ 1) = (1,1,1) 2 e.
where dt
d K2 3%1'('”2 Az + w3di3) The corresponding momentum g for each w € TpQ is given by the
N(@,0) = {57} - 02z (w112 + wadas) | . formula ; __
w;;ﬁ;(wlA‘;g + w;/\zg) H=e J(o)w = [17 1, I]J(o)w‘ (23)
N(8,6) is the component that contains the centrifugal and Coriolis To sux.nma;ize, we have a confignration space @ = ST x §* x
force terms. S, an action on Q by the rotational group G. To each 8 € Q.

the orbit, Gy, of the action is defined
Remark 2.1 The moment of irertia matrix, J, depends onr or 9, 01 the action Is celined as

8i;,i> j, only, and N(0, 6) is a function of 6:;,1> j, and w. Go = {6+ a,a € G)
It is important to observe that translational motion is decou-
pled from rotational motion. Integrating the translational com- Notation 3.1 Let ) = [ e be the set of hinge variables, i.e..
ponent, yields ¥3 ’
re(t) = vel(to}(t - to) + ro(to); " [ Ve ] [ 6, — 6, ]
1 = =
r(t) = alto)t — to) + rylto) — 59(t — to)’- b | [6-6

where g is time when the cat takes off, (r.(fo),r¢(tp)) is the po- and M = S x S? the hinge space.
sition of the mass center at take-off, and (v.(to),vy(to)) is the
take-off velocity. The flight time, T = (t; — #p), can be obtained
from the above equation by setting r,(t1) = ry(fo), i.e., P:Q— M6+ PO =

There exists a natural projection from Q to M, given by
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Figure 2: A global perspective of the system
For each y» € M, the preimage under P is the orbit Gy, where

0= . The triplet (Q,G, M) is called a principal bundle. A

L]
'/7
global perspective of the system is given by Figure 2.

Since the number of controls (2 here) is equal to the dimen-
sion of M, it is intuitive that a path in M should be fully control-
lable. This is indeed the case as the following theorem shows.
Theorem 3.1 Let p be the initial angular momentum, and
va(t) € M,t € [0,00), a desired trajectory in the hinge space.
Then, there ezists a choice of the control inputs 7(t) € R2,t €
[0, 00), such that the true trajectory tracks the desired trajectory,
i.e., the trajectory tracking error

ep(t) = $(t) — $a(t)
converyges to zero asymptotically as t — oo.

Remark 3.1 (1) The inertia matrix J depends on ¥ only, and
is nonsingular. (2) The centrifugal and Corolis force term N is a
function of ¢ and 4, i.e., N = N(4, 8).

Proof. By the above remark, multiplying Equation (20) by
J1(), yields,

0+ I ($)N(¥,8) = I (»)PT. (24)

We can write

00 . 1 . A . o
6=|1 0|+ ]|1]6= K¢+eby. (25)
01 1
Using (25) in the conservation of angular momentum Equation
(23), we get . .
p =" J(P)K ¢+ eT J(¥)eby. (26)
Finally, we have
by = (eTI(¥)e) " (1 — T J(P)K¥).

Consequently, the angular velocity vector w is a function of ¥, ¢
and g. That is,

w= Kjte{eTI()e} " {n - TID)K S}, i, w = w(p, d,p).

(28)

Multiplying (24) by P and using (28) we get the dynamcis
equation in the hinge space (or the reduced space).

¥+ PITN(Y) N(¥, 1) = PI (9)PTr, ¢ = P

Observe now that P has rank 2 and J is nonsingular. This implies
that

(27)

(29)

PI-NW)PT £ 531 (%)

is nonsingular.
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‘e claim that the following control law realizes the desired
trajectory ¥4(t),t € [0, 00).

™= In($) {$a = Koty — Kpep} + In(0)PI7 () N, %10,
(30)
where K,, K, € ®?%2 are properly chosen velocity and position
gains.
To see this, substituting (30) into the reduced dynamics equa-
tion (29), and after some algebra we have,
ép+ Kyép + Kpe, = 0. (31)

This shows that e, can be driven to zero by properly choosing K,
and K.
We now discuss maneuvering strategies. Let

J@) =[eTI@)e™ = [(h + B+ By +2) Mi(9)] 7,

i<j
0 -~
92(9) = fF()eTI(®) | 1 | = FONE + Az + Asa),
(1]

. 0
93(¥) = f()eTI(¥) [ 0 ] = f(¥)Ja + Az + Az3)
1

where we have used the fact that 63; = 3 — ¥3. Then, Equation -
(27) can be rewritten as

= f(P)ndt — g2()dpz — ga(¥)ds. (32)

Remark 3.2 In non-linear control terminology, f(¥)u is called
the drifting vector field, go(1), g3(1) the control vector fields.
Consider now a compact region Q in M, with boundary 8.
Integrating (32) over &2, and using Green’s Theorem ( assumirig
6,(0) = 0 ), yields,
9g2(¥)

01(t)=/f('l’)l““‘// (Q% 3,

The above equation indicates: (1) the net rotalwn of the body is
given by the superposition of the initial tum term
and the area integral in the hinge space; (2) Forward somersault
(or backward somersault) amounts to having 0,(t) undergo —2x (
or +2x) rotation within the time interval [0, T).

Based on Equation (33), we arrive at the following possible
maneuvering strategies for forward somersault:

) dipdis.  (33)

Strategy A: Using the drifting term only to accomplish forward
somersault. At take-off, creates a proper set of initial condi-
tions v,(0), v,(0), ¥(0),8:(0), u < 0, such that

16(T) + 2x] = |f($(O)nT + 2x] < ¢,

where € > 0is a safety factor. The legs are locked once the cat
is airborne. In fact, Hodgins and Raibert([8]) Liave used this
strategy to control the flipping of their biped with moderate
degrees of success.

Strategy B: Using internal motion of the legs to accomplish for-
ward somersault. At take-off, make the initial angnlar mo-
mentum g be zero. Then, when the cat is airborne net body
rotation is given by

99x(¥)

/./ (a?:,fj o3 ) dydys, t€[0, T).

Choose a closed trajectory ¢4(t) € M,t € [0,T], such that
the above area integral gives —2x rotation. Finally, choose

0(t) =




the hinge space control according to (30), with y:4(f),t €
[0, T}, as the desired trajectory. One can use the grid-based
searching method proposed in ([11]), which respects hinge-
torque constraints, to plan the desired ¥4(t). Note that a
falling cat, which starts from an upside-down configuration
with zero angular momentum, uses this strategy to land on
her feet.

Strategy C: This combines Strategy A and Strategy B to ac-
complish forward somersault.

Step A: Creates a proper set of initial conditions at take-off:
"'S(O)v ”v(o)v '/)(0)901(0% p<0. If

f($O)UT + 27| < €

then, lock the legs once the cat is airborne and go to
Step C. Else go to Step B.

Step B: (a). Plan a desired trajectory ¢4(t) € M,t € [0,T},
so that 8;(T) given from (33) is approximately —2x. (b).
Choose the the hinge space control law according to (30)
to realize the desired rotation. Go to Step C.

Step C: End.

While Strategy A is the simplest of all, it may risk failures
due to the difficulties in creating exact initial conditions. On
the other hand, Strategy B, which may be of great potentials in
space applications, is not practically sound for legged robots. For
example, for the biped built in Raibert’s laboratory, only 27° of
body rotation can be realized using internal motion only, as the
jumping height of the machine is limited. Thus, the best strategy
to employ for legged robots is Strategy C. We plan to implement
this strategy in Raibert’s biped in the near future.

4 Conclusions

In this report, we have studied the dynamics of a planar cat,
and have proposed a few strategies that a cat can use to perform
forward or backawrd somersault. We plan to test these strategies
in the real machines soon.
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