
Homework 5 Solutions

6.23

(a)

The transcription ~D → ~B, ~E → ~H, ~P → µ0
~M , ε0 → µ0 tells us that the determination

of ~H inside a uniformly magnetized sphere of magnetization ~M will be exactly the same

calculation as that of ~E for a uniformly polarized sphere of polarization ~P . The latter

problem was done for us in example 4.2, with the result that ~E = −~P/3ε0. This tells us

that for our current problem, ~H = − ~M/3. This then tells us the magnetic field inside the

sphere:
~B = µ0( ~H + ~M) =

2
3
µ0

~M. (1)

This agrees with equation 6.16 in the book.

(b)

The electrostatic analog of this problem was done in example 4.7 with the result

~E =
3

εr + 2
~E0. (2)

~E0 is the background field, and εr ≡ ε/ε0. Inside media, ~B = µ ~H and ε ~E = ~D, so it is

clear that we also have the correspondence ε → µ. We want to find ~B inside the sphere,

so we should rewrite our answer for the electrostatic problem in terms of ~D, which is the

analog of ~B:
~D = ε ~E =

3ε

εr + 2
1
ε0

~D0. (3)

Applying our transcription rules then gives us the ~B field:

~B =
3µr

µr + 2
~B0, (4)

where we define µr ≡ µ/µ0.

(c)

We have essentially already done this problem. We know that the average electric

field over a sphere with an arbitrary charge distribution and total dipole moment ~p (eqn

3.105),
~Eave = − 1

4πε0

~p

R3
, (5)
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is the same as the field due to a uniformly polarized sphere (eqn 4.14):

~E = − 1
3ε0

~P . (6)

This is because the total dipole moment is given by ~p = 4πR3

3
~P . By the transcription

quoted in the problem, we expect that the average ~H field over the sphere is the same as

the field due to a uniformly magnetized sphere. We have found the latter in part (a) using

the correspondence between electrostatics and magnetostatics:

~H = −1
3

~M = ~Have. (7)

We can also show that a similar relation holds for the ~B field:

~B = µ0( ~H + ~M) ⇒ ~Bave = µ0( ~Have + ~M) =
2
3
µ0

~M. (8)

We can replace ~M with the total magnetic dipole moment of the sphere, ~m = 4πR3

3
~M ,

yielding
~Bave =

µ0

4π

2~m

R3
, (9)

in agreement with equation 5.89.

6.24

The electric field for a uniformly charged sphere of radius R and charge density ρ is

given by
~E =

ρr̂

3ε0

{
r r < R

R3

r2 r > R

}
. (10)

It is also given by an integral:

~E =
ρ

4πε0

∫

sphere

d3r′
(~r − ~r′)
|~r − ~r′|3 . (11)

From these two expressions we see that

1
4π

∫

sphere

d3r′
(~r − ~r′)
|~r − ~r′|3 =

r̂

3

{
r r < R

R3

r2 r > R

}
. (12)

First, we will compute the scalar potential of a uniformly polarized sphere using this

result. The potential is

V =
1

4πε0

∫

sphere

d3r′
(~r − ~r′) · ~P (~r′)

|~r − ~r′|3 =
~P

4πε0
·
∫

sphere

d3r′
(~r − ~r′)
|~r − ~r′|3 =

~P · r̂
3ε0

{
r r < R

R3

r2 r > R

}
.

(13)
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This agrees with the result given in example 4.2.

Next, we’ll apply (11) to the computation of the vector potential for a uniformly

magnetized sphere.

~A =
µ0

4π

∫

sphere

d3r′
~M(~r′)× (~r − ~r′)

|~r − ~r′|3 =
~Mµ0

4π
×

∫

sphere

d3r′
(~r − ~r′)
|~r − ~r′|3

=
µ0

~M × r̂

3

{
r r < R

R3

r2 r > R

}
.

(14)

You can check that the curl of the expression for r > R is what we found for the magnetic

field of a uniformly magnetized sphere in part (a) of problem 6.23 above.
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